高一數學必修一集合知識點
集合(簡稱集)是數學中一個基本概念,它是集合論的研究對象,集合論的基本理論直到19世紀才被創(chuàng)立。以下是學習啦小編為您整理的關于高一數學必修一集合知識點的相關資料,希望對您有所幫助。
高一數學必修一集合知識點總結
一、集合及其表示
1、集合的含義:
“集合”這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的“全體集合”。數學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作 a∈A ,相反,d不屬于集合A ,記作 dA。
有一些特殊的集合需要記憶:
非負整數集(即自然數集) N 正整數集 N*或 N+
整數集Z 有理數集Q 實數集R
集合的表示方法:列舉法與描述法。
①列舉法:{a,b,c……}
?、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜?。如{xR| x-3>2} ,{x| x-3>2},{(x,y)|y=x2+1}
?、壅Z言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}
強調:描述法表示集合應注意集合的代表元素
A={(x,y)|y= x2+3x+2}與 B={y|y= x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。
3、集合的三個特性
(1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解: ,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質必須明確,不允許有模棱兩可、含混不清的情況。
二、集合間的基本關系
1.子集,A包含于B,記為: ,有兩種可能
(1)A是B的一部分,
(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之: 集合A不包含于集合B,記作 。
如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三個集合的關系可以表示為 , ,B=C。A是C的子集,同時A也是C的真子集。
2.真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個元素的集合,含有2n個子集,2n -1個真子集,含有2n -2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。
例:集合 共有 個子集。(13年高考第4題,簡單)
練習:A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。
解析:
集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。
集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。
此處這么羅嗦主要是為了讓同學們注意寫的順序,數學就是要講究嚴謹性和邏輯性的。一定要養(yǎng)成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學數學也沒什么必要了。
三、交集、并集、補集
這個是高考的重點,但是一般題目較簡單。
1.交集:
由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.
如集合A={1,2,3},集合B={2,3,4},則A∩B={2,3}。
例:已知集合 則 (11年高考第1題,簡單)
練習:
(2014北京)已知集合 ,則 ( )
答案:C
解析: ,所以 {0,2}
2、并集
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}.
如集合A={1,2,3},集合B={2,3,4},則A∪B={1,2,3,4}.
例:已知集合 , ,則 .(12年高考第1題,簡單)
答案:{1,2,4,6}
3、全集與補集
(1)補集:設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x xS且 xA}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
高一數學必修一集合知識點相關文章: