高一數(shù)學(xué)正弦定理知識點總結(jié)
高一數(shù)學(xué)的知識點和考點很多,有些是必須要牢牢掌握的。以下是學(xué)習(xí)啦小編為您整理的關(guān)于高一數(shù)學(xué)正弦定理知識點總結(jié)的相關(guān)資料,供您閱讀。
高一數(shù)學(xué)正弦定理知識點總結(jié)(一)課標要求
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當達到以下學(xué)習(xí)目標:(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。
高一數(shù)學(xué)正弦定理知識點總結(jié)(二)編寫意圖與特色
1.數(shù)學(xué)思想方法的重要性
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進行具體示范、引導(dǎo)。本章的兩個主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是"在任意三角形中有大邊對大角,小邊對小角","如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全"等。
教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:"在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?",在引入余弦定理內(nèi)容時,提出探究性問題"如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。"設(shè)置這些問題,都是為了加強數(shù)學(xué)思想方法的教學(xué)。
2.注意加強前后知識的聯(lián)系
加強與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準備,能使整套教科書成為一個有機整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題"在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?",在引入余弦定理內(nèi)容時,提出探究性問題"如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。"這樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。
《課程標準》和教科書把"解三角形"這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。 在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題"勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的關(guān)系?",并進而指出,"從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣."
高一數(shù)學(xué)正弦定理知識點總結(jié)相關(guān)文章:
1.高中數(shù)學(xué)必修一三角函數(shù)知識點總結(jié)
2.高一上學(xué)期數(shù)學(xué)必修內(nèi)容總結(jié)
3.高二數(shù)學(xué)三角函數(shù)知識點總結(jié)
5.高二數(shù)學(xué)知識點筆記 高二數(shù)學(xué)知識點總結(jié)