不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高一必修一數(shù)學(xué)各章知識(shí)點(diǎn)總結(jié)(2)

高一必修一數(shù)學(xué)各章知識(shí)點(diǎn)總結(jié)(2)

時(shí)間: 文娟843 分享

高一必修一數(shù)學(xué)各章知識(shí)點(diǎn)總結(jié)

  高一必修一數(shù)學(xué)各章知識(shí)點(diǎn):基本初等函數(shù)

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運(yùn)算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),,當(dāng)是偶數(shù)時(shí),

  2.分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

  (1)?;

  (2);

  (3).

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  a>1

  0

  圖象特征

  函數(shù)性質(zhì)

  向x、y軸正負(fù)方向無限延伸

  函數(shù)的定義域?yàn)镽

  圖象關(guān)于原點(diǎn)和y軸不對(duì)稱

  非奇非偶函數(shù)

  函數(shù)圖象都在x軸上方

  函數(shù)的值域?yàn)镽+

  函數(shù)圖象都過定點(diǎn)(0,1)

  自左向右看,

  圖象逐漸上升

  自左向右看,

  圖象逐漸下降

  增函數(shù)

  減函數(shù)

  在第一象限內(nèi)的圖象縱坐標(biāo)都大于1

  在第一象限內(nèi)的圖象縱坐標(biāo)都小于1

  在第二象限內(nèi)的圖象縱坐標(biāo)都小于1

  在第二象限內(nèi)的圖象縱坐標(biāo)都大于1

  圖象上升趨勢是越來越陡

  圖象上升趨勢是越來越緩

  函數(shù)值開始增長較慢,到了某一值后增長速度極快;

  函數(shù)值開始減小極快,到了某一值后減小速度較慢;

  注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

  (1)在[a,b]上,值域是或;

  (2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);

  (3)對(duì)于指數(shù)函數(shù),總有;

  (4)當(dāng)時(shí),若,則;

  高一必修一數(shù)學(xué)各章知識(shí)點(diǎn):對(duì)數(shù)函數(shù)

  (一)對(duì)數(shù)

  1.對(duì)數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對(duì)數(shù),記作:(—底數(shù),—真數(shù),—對(duì)數(shù)式)

  說明:1注意底數(shù)的限制,且;

  2;

  3注意對(duì)數(shù)的書寫格式.

  兩個(gè)重要對(duì)數(shù):

  1常用對(duì)數(shù):以10為底的對(duì)數(shù);

  2自然對(duì)數(shù):以無理數(shù)為底的對(duì)數(shù)的對(duì)數(shù).

  對(duì)數(shù)式與指數(shù)式的互化

  對(duì)數(shù)式指數(shù)式

  對(duì)數(shù)底數(shù)←→冪底數(shù)

  對(duì)數(shù)←→指數(shù)

  真數(shù)←→冪

  (二)對(duì)數(shù)的運(yùn)算性質(zhì)

  如果,且,,,那么:

  1?+;

  2-;

  3.

  注意:換底公式

  (,且;,且;).

  利用換底公式推導(dǎo)下面的結(jié)論(1);(2).

  (二)對(duì)數(shù)函數(shù)

  1、對(duì)數(shù)函數(shù)的概念:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).

  注意:1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。

  如:,都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).

  2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且.

  2、對(duì)數(shù)函數(shù)的性質(zhì):

  a>1

  0

  圖象特征

  函數(shù)性質(zhì)

  函數(shù)圖象都在y軸右側(cè)

  函數(shù)的定義域?yàn)?0,+∞)

  圖象關(guān)于原點(diǎn)和y軸不對(duì)稱

  非奇非偶函數(shù)

  向y軸正負(fù)方向無限延伸

  函數(shù)的值域?yàn)镽

  函數(shù)圖象都過定點(diǎn)(1,0)

  自左向右看,

  圖象逐漸上升

  自左向右看,

  圖象逐漸下降

  增函數(shù)

  減函數(shù)

  第一象限的圖象縱坐標(biāo)都大于0

  第一象限的圖象縱坐標(biāo)都大于0

  第二象限的圖象縱坐標(biāo)都小于0

  第二象限的圖象縱坐標(biāo)都小于0

  (三)冪函數(shù)

  1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).

  2、冪函數(shù)性質(zhì)歸納.

  (1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1);

  (2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;

  (3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.

  高一必修一數(shù)學(xué)各章知識(shí)點(diǎn):函數(shù)的應(yīng)用

  一、方程的根與函數(shù)的零點(diǎn)

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

  方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

  3、函數(shù)零點(diǎn)的求法:

  求函數(shù)的零點(diǎn):

  1(代數(shù)法)求方程的實(shí)數(shù)根;

  2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

  4、二次函數(shù)的零點(diǎn):

  二次函數(shù).

  1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
看過"高一必修一數(shù)學(xué)各章知識(shí)點(diǎn)總結(jié) "的還看了:

1.高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

2.高一上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

3.高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

4.高一數(shù)學(xué)集合知識(shí)點(diǎn)歸納和習(xí)題

1236240