2017年高考數(shù)學判斷函數(shù)值域的方法
2017年高考數(shù)學判斷函數(shù)值域的方法
在高中函數(shù)定義中,是指定義域中所有元素在某個對應法則下對應的所有的象所組成的集合以下是學習啦小編為您整理的關(guān)于2017年高考數(shù)學判斷函數(shù)值域的方法的相關(guān)資料,希望對您有所幫助。
高中數(shù)學知識點:常見函數(shù)值域
y=kx+b(k≠0)的值域為R
y=k/x的值域為(-∞,0)∪(0,+∞)
y=√x的值域為x≥0
y=ax?+bx+c當a>0時,值域為 [4ac-b?/4a,+∞) ;
當a<0時,值域為(-∞,4ac-b?/4a]
高中數(shù)學知識點:判斷函數(shù)值域的方法
1、配方法:利用二次函數(shù)的配方法求值域,需注意自變量的取值范圍。
2、換元法:常用代數(shù)或三角代換法,把所給函數(shù)代換成值域容易確定的另一函數(shù),從而得到原函數(shù)值域,如y=ax+b+_√cx-d(a,b,c,d均為常數(shù)且ac不等于0)的函數(shù)常用此法求解。
3、判別式法:若函數(shù)為分式結(jié)構(gòu),且分母中含有未知數(shù)x?,則常用此法。通常去掉分母轉(zhuǎn)化為一元二次方程,再由判別式△≥0,確定y的范圍,即原函數(shù)的值域
4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函數(shù)值域時,要時刻注意不等式成立的條件,即“一正,二定,三相等”。
5、反函數(shù)法:若原函數(shù)的值域不易直接求解,則可以考慮其反函數(shù)的定義域,根據(jù)互為反函數(shù)的兩個函數(shù)定義域與值域互換的特點,確定原函數(shù)的值域,如y=cx+d/ax+b(a≠0)型函數(shù)的值域,可采用反函數(shù)法,也可用分離常數(shù)法。
6、單調(diào)性法:首先確定函數(shù)的定義域,然后在根據(jù)其單調(diào)性求函數(shù)值域,常用到函數(shù)y=x+p/x(p>0)的單調(diào)性:增區(qū)間為(-∞,-√p)的左開右閉區(qū)間和(√p,+∞)的左閉右開區(qū)間,減區(qū)間為(-√p,0)和(0,√p)
7、數(shù)形結(jié)合法:分析函數(shù)解析式表達的集合意義,根據(jù)其圖像特點確定值域。
高中數(shù)學知識點:求函數(shù)值域的12種方法
一、觀察法
通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域。
例1求函數(shù)y=3+√(2-3x) 的值域。
點撥:根據(jù)算術(shù)平方根的性質(zhì),先求出√(2-3x) 的值域。
解:由算術(shù)平方根的性質(zhì),知√(2-3x)≥0,
故3+√(2-3x)≥3。
∴函數(shù)的知域為 .
點評:算術(shù)平方根具有雙重非負性,即:(1)被開方數(shù)的非負性,(2)值的非負性。
本題通過直接觀察算術(shù)平方根的性質(zhì)而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。
練習:求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})
二、反函數(shù)法
當函數(shù)的反函數(shù)存在時,則其反函數(shù)的定義域就是原函數(shù)的值域。
例2求函數(shù)y=(x+1)/(x+2)的值域。
點撥:先求出原函數(shù)的反函數(shù),再求出其定義域。
解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域為y≠1的實數(shù),故函數(shù)y的值域為{y∣y≠1,y∈R}。
點評:利用反函數(shù)法求原函數(shù)的定義域的前提條件是原函數(shù)存在反函數(shù)。這種方法體現(xiàn)逆向思維的思想,是數(shù)學解題的重要方法之一。
練習:求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域為{y∣y<-1或y>1})
三、配方法
當所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復合函數(shù)時,可以利用配方法求函數(shù)值域
例3:求函數(shù)y=√(-x2+x+2)的值域。
點撥:將被開方數(shù)配方成完全平方數(shù),利用二次函數(shù)的最值求。
解:由-x2+x+2≥0,可知函數(shù)的定義域為x∈[-1,2]。此時-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函數(shù)的值域是[0,3/2]
點評:求函數(shù)的值域不但要重視對應關(guān)系的應用,而且要特別注意定義域?qū)χ涤虻闹萍s作用。配方法是數(shù)學的一種重要的思想方法。
練習:求函數(shù)y=2x-5+√15-4x的值域.(答案:值域為{y∣y≤3})
四、判別式法
若可化為關(guān)于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。
例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。
點撥:將原函數(shù)轉(zhuǎn)化為自變量的二次方程,應用二次方程根的判別式,從而確定出原函數(shù)的值域。
解:將上式化為(y-2)x2-(y-2)x+(y-3)=0 (*)
當y≠2時,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2
當y=2時,方程(*)無解。∴函數(shù)的值域為2
點評:把函數(shù)關(guān)系化為二次方程F(x,y)=0,由于方程有實數(shù)解,故其判別式為非負數(shù),可求得函數(shù)的值域。常適應于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函數(shù)。
練習:求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域為y≤-8或y>0)。
五、最值法
對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。
點撥:根據(jù)已知條件求出自變量x的取值范圍,將目標函數(shù)消元、配方,可求出函數(shù)的值域。
解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。
當x=-1時,z=-5;當x=3/2時,z=15/4。
∴函數(shù)z的值域為{z∣-5≤z≤15/4}。
點評:本題是將函數(shù)的值域問題轉(zhuǎn)化為函數(shù)的最值。對開區(qū)間,若存在最值,也可通過求出最值而獲得函數(shù)的值域。
練習:若√x為實數(shù),則函數(shù)y=x2+3x-5的值域為 ( )
A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)
(答案:D)。
六、圖象法
通過觀察函數(shù)的圖象,運用數(shù)形結(jié)合的方法得到函數(shù)的值域。
例6求函數(shù)y=∣x+1∣+√(x-2)2 的值域。
點撥:根據(jù)絕對值的意義,去掉符號后轉(zhuǎn)化為分段函數(shù),作出其圖象。
解:原函數(shù)化為 -2x+1 (x≤1)
y= 3 (-1
2x-1(x>2)
它的圖象如圖所示。
顯然函數(shù)值y≥3,所以,函數(shù)值域[3,+∞]。
點評:分段函數(shù)應注意函數(shù)的端點。利用函數(shù)的圖象
求函數(shù)的值域,體現(xiàn)數(shù)形結(jié)合的思想。是解決問題的重要方法。
求函數(shù)值域的方法較多,還適應通過不等式法、函數(shù)的單調(diào)性、換元法等方法求函數(shù)的值域。
七、單調(diào)法
利用函數(shù)在給定的區(qū)間上的單調(diào)遞增或單調(diào)遞減求值域。
例1求函數(shù)y=4x-√1-3x(x≤1/3)的值域。
點撥:由已知的函數(shù)是復合函數(shù),即g(x)= -√1-3x,y=f(x)+g(x),其定義域為x≤1/3,在此區(qū)間內(nèi)分別討論函數(shù)的增減性,從而確定函數(shù)的值域。
解:設(shè)f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它們在定義域內(nèi)為增函數(shù),從而y=f(x)+g(x)= 4x-√1-3x
在定義域為x≤1/3上也為增函數(shù),而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函數(shù)值域為{y|y≤4/3}。
點評:利用單調(diào)性求函數(shù)的值域,是在函數(shù)給定的區(qū)間上,或求出函數(shù)隱含的區(qū)間,結(jié)合函數(shù)的增減性,求出其函數(shù)在區(qū)間端點的函數(shù)值,進而可確定函數(shù)的值域。
練習:求函數(shù)y=3+√4-x 的值域。(答案:{y|y≥3})
八、換元法
以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進而求出值域。
例2求函數(shù)y=x-3+√2x+1 的值域。
點撥:通過換元將原函數(shù)轉(zhuǎn)化為某個變量的二次函數(shù),利用二次函數(shù)的最值,確定原函數(shù)的值域。
解:設(shè)t=√2x+1 (t≥0),則
x=1/2(t2-1)。
于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
所以,原函數(shù)的值域為{y|y≥-7/2}。
點評:將無理函數(shù)或二次型的函數(shù)轉(zhuǎn)化為二次函數(shù),通過求出二次函數(shù)的最值,從而確定出原函數(shù)的值域。這種解題的方法體現(xiàn)換元、化歸的思想方法。它的應用十分廣泛。
練習:求函數(shù)y=√x-1 –x的值域。(答案:{y|y≤-3/4}
九、構(gòu)造法
根據(jù)函數(shù)的結(jié)構(gòu)特征,賦予幾何圖形,數(shù)形結(jié)合。
例3求函數(shù)y=√x2+4x+5+√x2-4x+8 的值域。
點撥:將原函數(shù)變形,構(gòu)造平面圖形,由幾何知識,確定出函數(shù)的值域。
解:原函數(shù)變形為f(x)=√(x+2)2+1+√(2-x)2+22
作一個長為4、寬為3的矩形ABCD,再切割成12個單位
正方形。設(shè)HK=x,則ek=2-x,KF=2+x,AK=√(2-x)2+22 ,
KC=√(x+2)2+1 。
由三角形三邊關(guān)系知,AK+KC≥AC=5。當A、K、C三點共
線時取等號。
∴原函數(shù)的知域為{y|y≥5}。
點評:對于形如函數(shù)y=√x2+a ±√(c-x)2+b(a,b,c均為正數(shù)),均可通過構(gòu)造幾何圖形,由幾何的性質(zhì),直觀明了、方便簡捷。這是數(shù)形結(jié)合思想的體現(xiàn)。
練習:求函數(shù)y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})
十、比例法
對于一類含條件的函數(shù)的值域的求法,可將條件轉(zhuǎn)化為比例式,代入目標函數(shù),進而求出原函數(shù)的值域。
例4已知x,y∈R,且3x-4y-5=0,求函數(shù)z=x2+y2的值域。
點撥:將條件方程3x-4y-5=0轉(zhuǎn)化為比例式,設(shè)置參數(shù),代入原函數(shù)。
解:由3x-4y-5=0變形得,(x3)/4=(y-1)/3=k(k為參數(shù))
∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
當k=-3/5時,x=3/5,y=-4/5時,zmin=1。
函數(shù)的值域為{z|z≥1}.
點評:本題是多元函數(shù)關(guān)系,一般含有約束條件,將條件轉(zhuǎn)化為比例式,通過設(shè)參數(shù),可將原函數(shù)轉(zhuǎn)化為單函數(shù)的形式,這種解題方法體現(xiàn)諸多思想方法,具有一定的創(chuàng)新意識。
練習:已知x,y∈R,且滿足4x-y=0,求函數(shù)f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})
十一、利用多項式的除法
例5求函數(shù)y=(3x+2)/(x+1)的值域。
點撥:將原分式函數(shù),利用長除法轉(zhuǎn)化為一個整式與一個分式之和
解:y=(3x+2)/(x+1)=3-1/(x+1)。
∵1/(x+1)≠0,故y≠3。
∴函數(shù)y的值域為y≠3的一切實數(shù)。
點評:對于形如y=(ax+b)/(cx+d)的形式的函數(shù)均可利用這種方法。
練習:求函數(shù)y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)
十二、不等式法
例6求函數(shù)Y=3x/(3x+1)的值域。
點撥:先求出原函數(shù)的反函數(shù),根據(jù)自變量的取值范圍,構(gòu)造不等式。
解:易求得原函數(shù)的反函數(shù)為y=log3[x/(1-x)],
由對數(shù)函數(shù)的定義知 x/(1-x)>0
1-x≠0
解得,0
∴函數(shù)的值域(0,1)。
點評:考查函數(shù)自變量的取值范圍構(gòu)造不等式(組)或構(gòu)造重要不等式,求出函數(shù)定義域,進而求值域。不等式法是重要的解題工具,它的應用非常廣泛。是數(shù)學解題的方法之一。
以下供練習選用:求下列函數(shù)的值域
1.Y=√(15-4x)+2x-5;({y|y≤3})
2.Y=2x/(2x-1)。 (y>1或y<0)
2017年高考數(shù)學判斷函數(shù)值域的方法相關(guān)文章:
1.2016年高考數(shù)學復習利用函數(shù)圖像解題技巧
2.高考數(shù)學函數(shù)的定義域和值域復習試題(含答案)