2017山東春季高考數(shù)學(xué)公式
2017山東春季高考數(shù)學(xué)公式
學(xué)習(xí)高考數(shù)學(xué)需要講究方法和技巧,更重要的是要總結(jié)好常考的高考數(shù)學(xué)公式,這樣可以避免在考試中犯錯(cuò)。下面是學(xué)習(xí)啦小編為大家整理的高考數(shù)學(xué)公式,希望對(duì)大家有所幫助!
山東春季高考數(shù)學(xué)公式總結(jié)
一元二次方程的解
-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 x1+x2=-b/a x1*x2=c/a 注:韋達(dá)定理
判別式 b2-4a=0 注:方程有相等的兩實(shí)根
b2-4ac>0 注:方程有兩個(gè)不相等的個(gè)實(shí)根
b2-4ac<0 注:方程有共軛復(fù)數(shù)根
立體圖形及平面圖形的公式
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'
圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長(zhǎng)
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
圖形周長(zhǎng) 面積 體積公式
長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2
正方形的周長(zhǎng)=邊長(zhǎng)×4
長(zhǎng)方形的面積=長(zhǎng)×寬
正方形的面積=邊長(zhǎng)×邊長(zhǎng)
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長(zhǎng)p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設(shè)三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)
| a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC
| e f 1 |
選區(qū)取最好按逆時(shí)針順序從右上角開始取,因?yàn)檫@樣取得出的結(jié)果一般都為正值,如果不按這個(gè)規(guī)則取,可能會(huì)得到負(fù)值,但不要緊,只要取絕對(duì)值就可以了,不會(huì)影響三角形面積的大小!】
三角形中線面積公式
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc為三角形的中線長(zhǎng).
平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長(zhǎng)=圓周率×直徑=
圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長(zhǎng)方體的表面積=
(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2
長(zhǎng)方體的體積 =長(zhǎng)×寬×高
正方體的表面積=棱長(zhǎng)×棱長(zhǎng)×6
正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng)
圓柱的側(cè)面積=底面圓的周長(zhǎng)×高
圓柱的表面積=上下底面面積+側(cè)面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長(zhǎng)方體(正方體、圓柱體)
的體積=底面積×高
平面圖形
名稱 符號(hào) 周長(zhǎng)C和面積S
正方形 a—邊長(zhǎng) C=4a
S=a2
長(zhǎng)方形 a和b-邊長(zhǎng) C=2(a+b)
S=ab
三角形 a,b,c-三邊長(zhǎng)
h-a邊上的高
s-周長(zhǎng)的一半
A,B,C-內(nèi)角
其中s=(a+b+c)/2 S=ah/2
=ab/2?sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
山東高考數(shù)學(xué)推論及定理
1 過(guò)兩點(diǎn)有且只有一條直線
2 兩點(diǎn)之間線段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯(cuò)角相等,兩直線平行
11 同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯(cuò)角相等
14 兩直線平行,同旁內(nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°
18 推論1 直角三角形的兩個(gè)銳角互余
19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(sas) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24 推論(aas) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25 邊邊邊公理(sss) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
山東高考數(shù)學(xué)必備知識(shí)點(diǎn)
第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。
第二:平面向量和三角函數(shù)。
重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。
第三:數(shù)列。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
第四:空間向量和立體幾何。
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
猜你喜歡: