不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數(shù)學 > 高三文科數(shù)學高考復習試題(附答案)

高三文科數(shù)學高考復習試題(附答案)

時間: 文娟843 分享

高三文科數(shù)學高考復習試題(附答案)

  考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備。下面是學習啦小編為大家整理的高三文科數(shù)學高考復習試題,請認真復習!

  高三文科數(shù)學高考復習試題

  一、選擇題:每小題只有一項是符合題目要求的,將答案填在題后括號內(nèi).

  1.函數(shù)y=log2x-2的定義域是(  )

  A.(3,+∞)     B.[3,+∞) C.(4,+∞) D.[4,+∞)

  2.設(shè)集合A={(x,y) | },B={(x,y)|y=2x},則A∩B的子集的個數(shù)是(  )

  A.1 B.2 C.3 D.4

  3.已知全集I=R,若函數(shù)f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},則M∩∁IN=(  )

  A.[32,2] B.[32,2) C.(32,2] D.(32,2)

  4.設(shè)f(x)是R上的奇函數(shù),當x>0時,f(x)=2x+x,則當x<0時,f(x)=(  )

  A.-(-12)x-x B.-(12)x+x C.-2x-x D.-2x+x

  5.下列命題①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要條件是“x≠1或x≠-1”.

  其中正確命題的個數(shù)是(  )

  A.0 B.1 C.2 D.3

  6. 已知下圖(1)中的圖像對應(yīng)的函數(shù)為 ,則下圖(2)中的圖像對應(yīng)的函數(shù)在下列給出的四個式子中,只可能是( )

  7.在用二分法求方程x3-2x-1=0的一個近似解時,現(xiàn)在已經(jīng)將一根鎖定在區(qū)間(1,2)內(nèi),則下一步可斷定該根所在的區(qū)間為(  )

  A.(1.4,2) B.(1,1.4) C.(1,32) D.(32,2)

  8.點M(a,b)在函數(shù)y=1x的圖象上,點N與點M關(guān)于y軸對稱且在直線x-y+3=0上,則函數(shù)f(x)=abx2+(a+b)x-1在區(qū)間[-2,2)上(  )

  A.既沒有最大值也沒有最小值 B.最小值為-3,無最大值

  C.最小值為-3,最大值為9 D.最小值為-134,無最大值

  9.已知函數(shù) 有零點,則 的取值范圍是( )

  A. B. C. D.

  二、填空題:將正確答案填在題后橫線上.

  10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},

  則如圖中陰影部分表示的集合為_______ _.

  11.若lga+lgb=0(a≠1),則函數(shù)f(x)=ax與g(x)=-bx的圖象關(guān)于________對稱.

  12.設(shè) ,一元二次方程 有正數(shù)根的充要條件是 = .

  13.若函數(shù)f(x)在定義域R內(nèi)可導,f(2+x)=f(2-x),且當x∈(-∞,2)時,(x-2) >0.設(shè)

  a=f(1), ,c=f(4),則a,b,c的大小為       .

  14、已知 。若 為真, 為假,則實數(shù) 的取值范圍是       .

  15.給出定義:若m-12<x≤m+12(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:

  ①函數(shù)y=f(x)的定義域為R,值域為[0,12];②函數(shù)y=f(x)的圖象關(guān)于直線x=k2(k∈Z)對稱;

 ?、酆瘮?shù)y=f(x)是周期函數(shù),最小正周期為1;④函數(shù)y=f(x)在[-12,12]上是增函數(shù).

  其中正確的命題的序號是______ __.

  三、解答題:解答須寫出文字說明、證明過程和演算步驟.

  16.設(shè)集合A={x|x2<4},B={x|1<4x+3}.

  (1) 求集合A∩B;

  (2) 若不等式2x2+ax+b<0的解集為B,求a,b的值.

  17.已知函數(shù)f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的單調(diào)減區(qū)間為(0,4).

  (1) 求k的值;

  (2) 對任意的t∈[-1,1],關(guān)于x的方程2x2+5x+a=f(t)總有實根,求實數(shù)a的取值范圍.

  18. 已知函數(shù)f(x)=log3(ax+b)的部分圖象如圖所示.

  (1) 求f(x)的解析式與定義域;

  (2) 函數(shù)f(x)能否由y=log3x的圖象平移變換得到;

  (3) 求f(x)在[4,6]上的最大值、最小值.

  19. 已知以函數(shù)f(x)=mx3-x的圖象上一點N(1,n)為切點的切線傾斜角為π4.

  (1) 求m、n的值;

  (2) 是否存在最小的正整數(shù)k,使得不等式f(x)≤k-1995,對于x∈[-1,3]恒成立?若存在,求出最小的正整數(shù)k,否則請說明理由.

  20.提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當 時,車流速度 是車流密度 的一次函數(shù).

  (1)當 時,求函數(shù) 的表達式;

  (2)當車流密度 為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時) 可以達到最大,并求出最大值.(精確到1輛/小時)

  21.已知函數(shù)f(x)=x,g(x)=alnx,a∈R.

  (1) 若曲線y=f(x)與曲線y=g(x)相交,且在交點處有相同的切線,求a的值及該切線的方程;

  (2) 設(shè)函數(shù)h(x)=f(x)-g(x),當h(x)存在最小值時,求其最小值φ(a)的解析式;

  高三文科數(shù)學高考復習試題參考答案

  一、選擇題:

  1.【解析】選D.y=log2x-2的定義域滿足log2x-2≥0,x>0,解這個不等式得x≥4.

  2.【解析】選D.集合A中的元素是焦點在y軸上的橢圓上的所有點,集合B中的元素是指數(shù)函數(shù)y=2x圖象上的所有點,作圖可知A∩B中有兩個元素,∴A∩B的子集的個數(shù)是22=4個,故選D.

  3.【解析】選A.由f(x)≤0解得1≤x≤2,故M=[1,2]; <0,即2x-3<0,即x<32,故N=(-∞,32),∁IN=[32,+∞).故M∩∁IN=[32,2].

  4.【解析】選B.當x<0時,則-x>0,∴f(-x)=2-x-x.又f(x)為奇函數(shù),∴f(x)=-f(-x)=-(12)x+x.故選B.

  5.【解析】選C.①當x=12時,x2<x,故該命題錯誤;②解x2≥x得x≤0或x≥1,故該命題正確;

  ③為真命題;④“x2≠1”的充要條件是“x≠1且x≠-1”.

  6.選D

  7.【解析】選D.令f(x)=x3-2x-1,則f(1)=-2<0,f(2)=3>0,f(32)=-58<0.故下一步可斷定該根所在區(qū)間為(32,2).

  8.【解析】選D.由已知b=1a,即ab=1,又N點(-a,b)在x-y+3=0上,

  ∴-a-b+3=0,即a+b=3.∴f(x)=abx2+(a+b)x-1=x2+3x-1=(x+32)2-134.

  又x∈[-2,2),由圖象知:f(x)min=-134,但無最大值.

  9.C

  二、填空題:

  10.【解析】∵A={1,2,3,4,5,…,10},B={-3,2},∴A∩B={2}.即陰影部分表示的集合為{2}.

  【答案】{2}

  11.【解析】由lga+lgb=0⇒ab=1⇒b=1a,所以g(x)=-a-x,故f(x)與g(x)關(guān)于原點對稱.

  【答案】原點

  12【答案】3或4

  13.【解析】選D.由f(2+x)=f(2-x)可得函數(shù)f(x)的對稱軸為x=2,故a=f(1)=f(3),

  c=f(4), .又由x∈(-∞,2)時,(x-2)f′(x)>0,可知f′(x)<0,即f(x)在(-∞,2)上是減函數(shù),所以f(x)在(2,+∞)上是增函數(shù)于是f(4)>f(3)>f( ),即c>a>b.故選D.

  14.【答案】

  15.【解析】①由定義知:-12<x-{x}≤12,∴0≤|x-{x}|≤12 ∴f(x)的值域為[0,12],

  ∴①對,②對,③對,④錯. 【答案】①②③

  三、解答題:

  16.【解】(1)A={x|x2<4}={x|-2

  A∩B={x|-2

  (2)因為2x2+ax+b<0的解集為B={x|-3

  故-a2=-3+1b2=-3×1,所以a=4,b=-6.

  17.【解】(1)f′(x)=3kx2-6(k+1)x,又∵f′(4)=0,∴k=1.

  (2)由(1)得f(x)=x3-6x2+2,∴f′(t)=3t2-12t.

  ∵當-1<t<0時,f′(t)>0;當0<t<1時,f′(t)<0,且f(-1)=-5,f(1)=-3,∴f(t)≥-5.

  ∵2x2+5x+a≥8a-258,∴8a-258≤-5,解得a≤-158.

  18.【解】(1)由圖象中A、B兩點坐標得2a+b=35a+b=9,解得a=2b=-1.故f(x)=log3(2x-1),定義域為(12,+∞).

  (2)可以.由f(x)=log3(2x-1)=log3[2(x-12)]=log3(x-12)+log32,

  ∴f(x)的圖象是由y=log3x的圖象向右平移12個單位,再向上平移log32個單位得到的.

  (3)最大值為f(6)=log311,最小值為f(4)=log37.

  19.【解】(1)f′(x)=3mx2-1,f′(1)=tanπ4=1,∴3m-1=1,∴m=23.

  從而由f(1)=23-1=n,得n=-13,∴m=23,n=-13.

  (2)存在.f′(x)=2x2-1=2(x+22)(x-22),令f′(x)=0得x=±22.

  在[-1,3]中,當x∈[-1,-22]時,f′(x)>0,f(x)為增函數(shù),

  當x∈[-22,22]時,f′(x)<0,f(x)為減函數(shù),此時f(x)在x=-22時取得極大值.

  當x∈[22,3]時,此時f′(x)>0,f(x)為增函數(shù),比較f(-22),f(3)知f(x)max=f(3)=15.

  ∴由f(x)≤k-1995,知15≤k-1995,∴k≥2010,即存在最小的正整數(shù)k=2010,

  使不等式在x∈[-1,3]上恒成立.

  20.本題主要考查函數(shù)、最值等基礎(chǔ)知識,同時考查運用數(shù)學知識解決實際問題的能力.

  解析:(Ⅰ)由題意:當 時, ;當 時,設(shè) ,顯然 在 是減函數(shù),由已知得 ,解得

  故函數(shù) 的表達式為 =

  (Ⅱ)依題意并由(Ⅰ)可得

  當 時, 為增函數(shù),故當 時,其最大值為 ;

  當 時, ,

  當且僅當 ,即 時,等號成立.

  所以,當 時, 在區(qū)間 上取得最大值 .

  綜上,當 時, 在區(qū)間 上取得最大值 ,

  即當車流密度為100輛/千米時,車流量可以達到最大,最大值約為3333輛/小時.

  21.【解】(1)f′(x)=12x,g′(x)=ax(x>0),由已知得x=alnx,12x=ax,解得a=e2,x=e2,

  ∴兩條曲線交點的坐標為(e2,e).切線的斜率為k=f′(e2)=12e,

  ∴切線的方程為y-e=12e(x-e2).

  (2)由條件知h(x)=x-alnx(x>0),∴h′(x)=12x-ax=x-2a2x,

 ?、佼攁>0時,令h′(x)=0,解得x=4a2.∴當0<x<4a2時,h′(x)<0,h(x)在(0,4a2)上單調(diào)遞減;

  當x>4a2時,h′(x)>0,h(x)在(4a2,+∞)上單調(diào)遞增.

  ∴x=4a2是h(x)在(0,+∞)上的惟一極值點,且是極小值點,從而也是h(x)的最小值點.

  ∴最小值φ(a)=h(4a2)=2a-aln(4a2)=2a[1-ln (2a)].

 ?、诋攁≤0時,h′(x)=x-2a2x>0,h(x)在(0,+∞)上單調(diào)遞增,無最小值.

  故h(x)的最小值φ(a)的解析式為φ(a)=2a[1-ln (2a)](a>0).

  (3) 對(2)中的φ(a),證明:當a∈(0,+∞)時,φ(a)≤1.

  (3)證明:由(2)知φ(a)=2a(1-ln 2-ln a),則φ′(a)=-2ln (2a).令φ′(a)=0,解得a=12.

  當0<a<12時,φ′(a)>0,∴φ(a)在(0,12)上單調(diào)遞增;

  當a>12時,φ′(a)<0,∴φ(a)在(12,+∞)上單調(diào)遞減.∴φ(a)在a=12處取得極大值φ(12)=1.

  ∵φ(a)在(0,+∞)上有且只有一個極值點,∴φ(12)=1也是φ(a)的最大值.

  ∴當a∈(0,+∞)時,總有φ(a)≤1.
看過"高三文科數(shù)學高考復習試題(附答案) "的還看了:

1.高考文科數(shù)學復習方法

2.高考文科數(shù)學知識點

3.2016高考文科數(shù)學復習

4.新課標高考數(shù)學題型歸納(文科版)

1242695