不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級數(shù)學(xué) > 蘇科版八年級上冊數(shù)學(xué)期末試卷有答案

蘇科版八年級上冊數(shù)學(xué)期末試卷有答案

時間: 礎(chǔ)鴻1124 分享

蘇科版八年級上冊數(shù)學(xué)期末試卷有答案

  八年級數(shù)學(xué)期末考試,我們抓基礎(chǔ)知識復(fù)習(xí)的同時,別忘記做數(shù)學(xué)期末試卷套題。也一定有突破點的以下是學(xué)習(xí)啦小編為你整理的蘇科版八年級上冊數(shù)學(xué)期末試卷,希望對大家有幫助!

  蘇科版八年級上冊數(shù)學(xué)期末試卷

  一、你一定能選對!(每小題3分,共24分)

  1.64的立方根是( ▲ )

  A.±4 B.±8 C.4 D.8

  2.2013年元月一日實施的新交規(guī)讓人們的出行更具安全性,以下交通標志中既是中心對稱圖形又是軸對稱圖形的是( ▲ )

  A. B. C. D.

  3.已知等腰三角形一個外角等于120°,則它的頂角是( ▲ )

  A.60° B.20° C.60°或20° D.不能確定

  4.下列數(shù)組中:① 5,12,13 ② 2,3,4 ③ 2.5,6,6.5 ④ 21,20,29 其中勾股數(shù)有( ▲ )組

  A.4 B.3 C.2 D.1

  5.已知點P關(guān)于x軸的對稱點P1的坐標是(2,3),則點P坐標是( ▲ )

  A.(-3,-2) B.(-2,3) C.(2,-3) D.(3,-2)

  6.到三角形的三個頂點距離相等的點是( ▲ )

  A.三條角平分線的交點 B.三條中線的交點

  C.三條高的交點 D.三條邊的垂直平分線的交點

  7. 關(guān)于函數(shù) ,下列結(jié)論正確的是 ( ▲ )

  A.圖象必經(jīng)過(-2,1) B.y隨x的增大而增大

  C.圖象經(jīng)過第一、二、三象限 D.當(dāng)x> 時,y<0

  8.在同一坐標系中,函數(shù) 與 的圖象大致是( ▲ )

  二、你能填得又快又準嗎?(每小題3分,共30分)

  9.按四舍五入取近似值,67.806(保留三個有效數(shù)字)≈___________.

  10.將函數(shù) 的圖象向上平移2個單位,所得函數(shù)圖象的解析式為___________.

  11.順次連接等腰梯形的各邊中點所得的四邊形是___________.

  12.直線 與 的位置關(guān)系為 .

  13.函數(shù) 是y關(guān)于x的正比例函數(shù),則m=______.

  14.一次外語口語考試中,某題(滿分為5分)的得分情況如下表:

  則該題得分的眾數(shù)_______分.

  得分/分 0 1 2 3 4 5

  百分率 15% 10% 20% 40% 10% 5%

  15.在 , ,若 ,且 ,則 到邊 的距離是 .

  16.在直角坐標系中,點 為 軸上的一個動點,當(dāng) ______ 時,線段PA的長得到最小值.

  17.如圖,在長方形紙片ABCD中,AD=4cm,AB=8cm,按如圖方式折疊,使點B與點D重合,折痕為EF,則 ______cm.

  18.如圖1,平行四邊形紙片 的面積為120, , .沿兩對角線將四邊形 剪成甲、乙、丙、丁四個三角形紙片.若將甲、丙合并( 、 重合)形成對稱圖形戊,如圖2所示,則圖形戊的兩條對角線長度之和是 .

  三、耐心解答,你一定能做對!(共96分)

  19.(本題8分)

  (1) (2)已知: 求x的值.

  20.(本題8分)如圖,點O是菱形ABCD對角線的交點,過點C作BD的平行線CE,過點D作AC的平行線DE,CE與DE相交于點E,試說明四邊形OCED是矩形.

  21. (本題8分)已知直線 ,它們能交于同一點嗎?為什么?

  22.(本題8分)在平面直角坐標系中,點 為原點,直線 交x軸于點 ,交 軸于點 .若 的面積為4,求 的值.

  23.(本題10分)某社區(qū)要在如圖所示AB所在的直線上建一圖書室E,并使圖書室E到本社區(qū)兩所學(xué)校C和D的距離相等(C、D所在位置如圖所示), (1)請用圓規(guī)和直尺在圖中作出點E;(不寫作法,保留作圖痕跡)

  (2)求圖書室E到點A的距離.

  24.(本題10分)世界上大部分國家都使用攝氏(℃)溫度,但美、英等國的天氣預(yù)報仍然使用華氏(℉)溫度,兩種計量之間有如下對應(yīng):

  ℃ 0 10 20 30

  ℉ 32 50 68 86

  (1)設(shè)攝氏溫度為 (℃),華氏溫度為 (℉), 如果這兩種計量之間的關(guān)系是一次函數(shù),請求出該一次函數(shù)表達式.

  (2)求出華氏0度時攝氏是多少度.

  (3)華氏溫度的值與對應(yīng)的攝氏溫度的值有相等的可能嗎?請說明理由.

  25.(本題10分)如圖,正方形ABCD中,P為對角線BD上一點(P點不與B、D重合),PE⊥BC于E,PF⊥DC于F,連接EF,猜想AP與EF的關(guān)系并證明你的結(jié)論.

  26.(本題10分)“職來職往”中各家企業(yè)對A、B、C三名應(yīng)聘者進行了面試、語言交際和專業(yè)技能共三項素質(zhì)測試,他們的成績?nèi)缦卤硭荆?/p>

  應(yīng)聘者

  得分

  測試項目 A B C

  面試 72 56 48

  語言交際 88 80 88

  專業(yè)技能 64 72 80

  (1)如果根據(jù)三項測試的平均成績確定錄用人員,你選擇誰?請說明理由;

  (2)根據(jù)實際需要,新浪微博公司給出了選人標準:將面試、語言交際和專業(yè)技能三項測試得分按1:3:4比例確定各人的測試成績,你選誰?請說明理由.

  27.(本題12分)在平面直角坐標系中,點P從原點O出發(fā),每次向上平移2個單位長度或向右平移1個單位長度.

  P從點O出發(fā)

  平移次數(shù) 可能到達的

  點的坐標

  1 次 (0,2)(1,0)

  2 次

  3 次

  (1) 實驗操作

  在平面直角坐標系中描出點P從點O出發(fā),平移1次后,2次后,3次后可能到達的點,并把相應(yīng)點的坐標填寫在表格中.

  (2) 觀察思考

  任一次平移,點P可能到達的點在我們學(xué)過的一次函數(shù)的圖像上,如:平移1次后點P在函數(shù)________________的圖像上;平移2次后點P在函數(shù)_________________的圖像上……

  (3)規(guī)律發(fā)現(xiàn)

  由此我們知道,平移n次后點P在函數(shù)__________________的圖像上(請?zhí)顚懴鄳?yīng)的解析式)

  28.(本題12分)如圖,在平面直角坐標系中, ,

  ,點Q從點A出發(fā)以1cm/s的速度向點B運動,點P從點O出發(fā)以2cm/s的速度在線段OC間往返運動,P、Q兩點同時出發(fā),當(dāng)點Q到達點B時,兩點同時停止運動.

  (1)當(dāng)運動 秒時,

  =____________, 的坐標是( ____ , ____ )(用含t的代數(shù)式表示)

  (2)當(dāng)t為何值時,四邊形 的面積為36cm2?

  (3)當(dāng)t為何值時,四邊形 為平行四邊形?

  (4)當(dāng)t為何值時,四邊形 為等腰梯形?

  蘇科版八年級上冊數(shù)學(xué)期末試卷答案

  一、選擇(每題3分,共24分.)

  題號 1 2 3 4 5 6 7 8

  選項 C B A C C D D B

  二、填空(每題3分,共30分.)

  9. 67.8 10. y=3x+2 11. 菱形 12. 平行 13. 1

  14. 3 15. 6 16. 2 17. 5 18. 26

  三、解答題(本大題共10小題,共96分。)

  19. (1)

  (2)x =8,x =-4

  20.解:∵四邊形ABCD為菱形

  ∴AC⊥BD于O

  ∴∠DOC=90°…………………………(3分)

  ∵DE∥AC,CE∥BD

  ∴四邊形OCED為平行四邊形…………(7分)

  ∴四邊形OCED為矩形…………………(8分)

  21.解:交于一點…………………………(1分)

  求出交點坐標 (5分),

  驗證此交點是否在第三條直線上(8分)

  22.解: (2分)

  ∴ ∴b=±4(8分)

  23.解(1)作圖略…………………………(3分)

  (2)設(shè)圖書館E與點A的距離為xkm…………(4分)

  即AE=xkm,則EB=(25-x)km

  ∵CA⊥AB于A,DB⊥AB于B,

  ∴∠EAC=∠EBD=90°

  ∴

  ∴x=10………………………………………(9分)

  ∴圖書館E與點A的距離為10km.………………(10分)

  24. 解:(1) (4分)

  (2) (7分)

  (3)當(dāng)華氏-40度時,攝氏也是-40度. 理由略(10分)

  25.解:AP⊥EF,AP=EF………(2分)

  方法1:延長FP交AB于M

  延長AP交EF于N

  可證四邊形MFCB為矩形

  得MF=BC

  四邊形ABCD為正方形

  得AB=BC

  ∴MF=AB

  可證PM=BM

  ∴AM=PF

  可證△AMP≌FPE得AP=EF……(6分)

  得∠PFE=∠MAP

  ∵∠FPN=∠MPA

  ∴∠PNF=∠AMP=90°

  ∴AP⊥EF…………………………(10分)

  方法2:連接PC交EF于O

  證四邊形PFCE為矩形

  得PC=EF

  證△APD≌△CPD

  得PC=AP

  ∴EF=AP

  ∵四邊形PFCE為矩形

  可證OF=OC

  得∠OFC=∠OCF

  ∵∠PFC=90°

  ∴∠PFO+∠OFC=90°

  ∴∠PFO+∠OCF=90°

  ∵△APD≌△CPD

  ∴∠DAP=∠DCP

  ∴∠PFO+∠DAP=90°

  ∵四邊形DANF內(nèi)角和為360°

  即∠DAN+∠ADF+∠NFP+∠PFD+∠ANF=360°

  可證∠ANF=90°

  ∴AP⊥EF于N

  (其它方法參照給分)

  26.解:(1) 錄用A (1分)

  (4分)

  (也可計算總分)

  比較大小得結(jié)論(5分)

  (2)錄用C (6分 )

  A的加權(quán)平均分為74分,B的加權(quán)平均分為73分,C的加權(quán)平均分為79分.

  比較大小得結(jié)論(10分)

  27.(1)(0,4)(1,2)(2,0);

  (0,6)(1,4)(2,2)(3,0)(7分)

  (2)y = -2x+2 , y = -2x+4 (9分)

  (3)y = -2x+2n (12分)

  28. 解:(1) 10-2t , Q ( t , 6 ) (2分)

  (其它方法參照給分)

3743473