人教版八年級(jí)上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
人教版八年級(jí)上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
學(xué)習(xí)八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)使你付出許多,其中包括你的努力你的鉆研你的時(shí)光你的心血和汗水等。學(xué)習(xí)就是一種會(huì)使你更快樂生活質(zhì)量更好更有自尊對(duì)社會(huì)貢獻(xiàn)更大的一種素質(zhì)提高過程。下面小編給大家分享一些人教版八年級(jí)上數(shù)學(xué)知識(shí)點(diǎn)總結(jié),大家快來跟小編一起看看吧。
人教版八年級(jí)上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)第11-12章
第十一章 全等三角形
1.全等三角形的性質(zhì):全等三角形對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等.
2.全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對(duì)邊對(duì)應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL).
3.角平分線的性質(zhì):角平分線平分這個(gè)角,角平分線上的點(diǎn)到角兩邊的距離相等
4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上.
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).
第十二章 軸對(duì)稱
1.如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸.
2.軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線.
3.角平分線上的點(diǎn)到角兩邊距離相等.
4.線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.
5.與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.
6.軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等.
7.畫一圖形關(guān)于某條直線的軸對(duì)稱圖形的步驟:找到關(guān)鍵點(diǎn),畫出關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn),按照原圖順序依次連接各點(diǎn).
8.點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(x,-y)
點(diǎn)(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為(-x,y)
點(diǎn)(x,y)關(guān)于原點(diǎn)軸對(duì)稱的點(diǎn)的坐標(biāo)為(-x,-y)
9.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱為“三線合一”.
10.等腰三角形的判定:等角對(duì)等邊.
11.等邊三角形的三個(gè)內(nèi)角相等,等于60°,
12.等邊三角形的判定: 三個(gè)角都相等的三角形是等腰三角形.
有一個(gè)角是60°的等腰三角形是等邊三角形
有兩個(gè)角是60°的三角形是等邊三角形.
13.直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半.
14.直角三角形斜邊上的中線等于斜邊的一半
人教版八年級(jí)上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)第13-14章
第十三章 實(shí)數(shù)
※算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作 .0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根.
※平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根.
※正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根.
※正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù).
數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0
第十四章 一次函數(shù)
1.畫函數(shù)圖象的一般步驟:一、列表(一次函數(shù)只用列出兩個(gè)點(diǎn)即可,其他函數(shù)一般需要列出5個(gè)以上的點(diǎn),所列點(diǎn)是自變量與其對(duì)應(yīng)的函數(shù)值),二、描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)函數(shù)的值為縱坐標(biāo),描出表格中的個(gè)點(diǎn),一般畫一次函數(shù)只用兩點(diǎn)),三、連線(依次用平滑曲線連接各點(diǎn)).
2.根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式.
3.若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量).特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù).
4.正比列函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線.
5.正比列函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中: 當(dāng)k>0時(shí),y隨x的增大而增大; 當(dāng)k<0時(shí),y隨x的增大而減小.
6.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):
把兩點(diǎn)帶入函數(shù)一般式列出方程組
求出待定系數(shù)
把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式
7.會(huì)從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點(diǎn)坐標(biāo)橫坐標(biāo)值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點(diǎn)坐標(biāo)值)
人教版八年級(jí)上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)第15章
第十五章 整式的乘除與因式分解
1.同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則: (m,n都是正數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):
?、俜▌t使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;
②指數(shù)是1時(shí),不要誤以為沒有指數(shù);
?、鄄灰獙⑼讛?shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
?、墚?dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為 (其中m、n、p均為正數(shù));
?、莨竭€可以逆用: (m、n均為正整數(shù))
2.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆.
※2. .
※3. 底數(shù)有負(fù)號(hào)時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(-a)時(shí)不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3
※4.底數(shù)有時(shí)形式不同,但可以化成相同.
※5.要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零).
※6.積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即 (n為正整數(shù)).
※7.冪的乘方與積乘方法則均可逆向運(yùn)用.
3. 整式的乘法
※(1). 單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式.
單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):
①積的系數(shù)等于各因式系數(shù)積,先確定符號(hào),再計(jì)算絕對(duì)值.這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;
?、谙嗤帜赶喑?運(yùn)用同底數(shù)的乘法法則;
③只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;
④單項(xiàng)式乘法法則對(duì)于三個(gè)以上的單項(xiàng)式相乘同樣適用;
?、輪雾?xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式.
※(2).單項(xiàng)式與多項(xiàng)式相乘
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加.
單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
①單項(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
?、谶\(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);
③在混合運(yùn)算時(shí),要注意運(yùn)算順序.
※(3).多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.
多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
?、俣囗?xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;
②多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
?、蹖?duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘 ,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積.對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得
4.平方差公式
¤1.平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,
※即 .
¤其結(jié)構(gòu)特征是:
①公式左邊是兩個(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);
?、诠接疫吺莾身?xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差.
5.完全平方公式
¤1. 完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結(jié)構(gòu)特征:
?、俟阶筮吺嵌?xiàng)式的完全平方;
?、诠接疫吂灿腥?xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍.
¤3.在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn) 這樣的錯(cuò)誤.
添括號(hào)法則:添正不變號(hào),添負(fù)各項(xiàng)變號(hào),去括號(hào)法則同樣
6. 同底數(shù)冪的除法
※1. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a≠0,m、n都是正數(shù),且m>n).
※2. 在應(yīng)用時(shí)需要注意以下幾點(diǎn):
?、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
?、谌魏尾坏扔?的數(shù)的0次冪等于1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即 ( a≠0,p是正整數(shù)), 而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的; 當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如 ,
?、苓\(yùn)算要注意運(yùn)算順序.
7.整式的除法
¤1.單項(xiàng)式除法單項(xiàng)式
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
¤2.多項(xiàng)式除以單項(xiàng)式
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào).
8. 分解因式
※1. 把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
※2. 因式分解與整式乘法是互逆關(guān)系.
因式分解與整式乘法的區(qū)別和聯(lián)系:
(1)整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;
(2)因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘.
下一頁分享>>>人教版八年級(jí)上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)