蘇教版八年級(jí)上冊(cè)數(shù)學(xué)期末試卷及答案2017(2)
蘇教版八年級(jí)上冊(cè)數(shù)學(xué)期末試卷及答案2017
∴∠BAC=∠EAF+∠EAB+∠FAC=100°+∠EAB+∠CAF=100°+ (∠AEF+∠AFE)=140°.
故答案為:10,140°.
【點(diǎn)評(píng)】本題主要考查了線段的垂直平分線的性質(zhì)等幾何知識(shí),線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等,以及外角的性質(zhì),難度適中.
三、解答題(本大題8個(gè)小題,共78分)
19.如圖,在△ABC和△ABD中,AC與BD相交于點(diǎn)E,AD=BC,∠DAB=∠CBA,求證:AC=BD.
【考點(diǎn)】全等三角形的判定與性質(zhì).
【專題】證明題.
【分析】根據(jù)“SAS”可證明△ADB≌△BAC,由全等三角形的性質(zhì)即可證明AC=BD.
【解答】證明:在△ADB和△BAC中,
,
∴△ADB≌△BAC(SAS),
∴AC=BD.
【點(diǎn)評(píng)】本題考查了全等三角形的判定和性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.
20.如圖,△ABO與△CDO關(guān)于O點(diǎn)中心對(duì)稱,點(diǎn)E、F在線段AC上,且AF=CE.
求證:FD=BE.
【考點(diǎn)】全等三角形的判定與性質(zhì);中心對(duì)稱.
【專題】證明題;壓軸題.
【分析】根據(jù)中心對(duì)稱得出OB=OD,OA=OC,求出OF=OE,根據(jù)SAS推出△DOF≌△BOE即可.
【解答】證明:∵△ABO與△CDO關(guān)于O點(diǎn)中心對(duì)稱,
∴OB=OD,OA=OC,
∵AF=CE,
∴OF=OE,
∵在△DOF和△BOE中
∴△DOF≌△BOE(SAS),
∴FD=BE.
【點(diǎn)評(píng)】本題考查了全等三角形的性質(zhì)和判定,中心對(duì)稱的應(yīng)用,主要考查學(xué)生的推理能力.
21.已知,如圖,AB=AC,BD=CD,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,試問(wèn):DE和DF相等嗎?說(shuō)明理由.
【考點(diǎn)】全等三角形的判定與性質(zhì).
【專題】常規(guī)題型.
【分析】連接AD,易證△ACD≌△ABD,根據(jù)全等三角形對(duì)應(yīng)角相等的性質(zhì)可得∠EAD=∠FAD,再根據(jù)∠AED=∠AFD,AD=AD,即可證明△ADE≌△ADF,根據(jù)全等三角形對(duì)應(yīng)邊相等的性質(zhì)可得DE=DF.
【解答】證明:
連接AD,在△ACD和△ABD中, ,
∴ACD≌△ABD(SSS),
∵DE⊥AE,DF⊥AF,
∴∠AED=∠AFD=90°,
∴在△ADE和△ADF中, ,
∴△ADE≌△ADF,
∴DE=DF.
【點(diǎn)評(píng)】本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)角、對(duì)應(yīng)邊相等的性質(zhì).
22.在圖示的方格紙中
(1)作出△ABC關(guān)于MN對(duì)稱的圖形△A1B1C1;
(2)說(shuō)明△A2B2C2是由△A1B1C1經(jīng)過(guò)怎樣的平移得到的?
【考點(diǎn)】作圖-軸對(duì)稱變換;作圖-平移變換.
【專題】作圖題.
【分析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于MN的對(duì)稱點(diǎn)A1、B1、C1的位置,然后順次連接即可;
(2)根據(jù)平移的性質(zhì)結(jié)合圖形解答.
【解答】解:(1)△A1B1C1如圖所示;
(2)向右平移6個(gè)單位,再向下平移2個(gè)單位(或向下平移2個(gè)單位,再向右平移6個(gè)單位).
【點(diǎn)評(píng)】本題考查了利用軸對(duì)稱變換作圖,利用平移變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu)準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置以及變化情況是解題的關(guān)鍵.
23.尺規(guī)作圖:
(1)如圖(1),已知:點(diǎn)A和直線l.求作:點(diǎn)A′,使點(diǎn)A′和點(diǎn)A關(guān)于直線l對(duì)稱.
(2)如圖(2),已知:線段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.
【考點(diǎn)】作圖-軸對(duì)稱變換.
【專題】作圖題.
【分析】(1)過(guò)點(diǎn)A作直線l的垂線,再截取AA′,使直線l平分AA′;
(2)作∠B=∠α,然后取AB=a,以點(diǎn)A為圓心,以a為半徑畫(huà)弧,與∠B的另一邊相交于點(diǎn)C,連接AC即可.
【解答】解:(1)如圖所示;
(2)△ABC如圖所示.
【點(diǎn)評(píng)】本題考查了利用軸對(duì)稱變換作圖,作一個(gè)角等于已知角,都是基本作圖,需熟記.
24.如圖,已知直線l及其兩側(cè)兩點(diǎn)A、B.
(1)在直線l上求一點(diǎn)O,使到A、B兩點(diǎn)距離之和最短;
(2)在直線l上求一點(diǎn)P,使PA=PB;
(3)在直線l上求一點(diǎn)Q,使l平分∠AQB.
【考點(diǎn)】線段垂直平分線的性質(zhì);線段的性質(zhì):兩點(diǎn)之間線段最短;角平分線的性質(zhì).
【專題】作圖題.
【分析】(1)根據(jù)兩點(diǎn)之間線段最短,連接AB,線段AB交直線l于點(diǎn)O,則O為所求點(diǎn);
(2)根據(jù)線段垂直平分線的性質(zhì)連接AB,在作出線段AB的垂直平分線即可;
(3)作B關(guān)于直線l的對(duì)稱點(diǎn)B′,連接AB′交直線l與點(diǎn)Q,連接BQ,由三角形全等的判定定理求出△BDQ≌△B′DQ,再由全等三角形的性質(zhì)可得出∠BQD=∠B′QD,即直線l平分∠AQB.
【解答】解:(1)連接AB,線段AB交直線l于點(diǎn)O,
∵點(diǎn)A、O、B在一條直線上,
∴O點(diǎn)即為所求點(diǎn);
(2)連接AB,
分別以A、B兩點(diǎn)為圓心,以任意長(zhǎng)為半徑作圓,兩圓相交于C、D兩點(diǎn),連接CD與直線l相交于P點(diǎn),
連接BD、AD、BP、AP、BC、AC,
∵BD=AD=BC=AC,
∴△BCD≌△ACD,
∴∠BED=∠AED=90°,
∴CD是線段AB的垂直平分線,
∵P是CD上的點(diǎn),
∴PA=PB;
(3)作B關(guān)于直線l的對(duì)稱點(diǎn)B′,連接AB′交直線l與點(diǎn)Q,連接BQ,
∵B與B′兩點(diǎn)關(guān)于直線l對(duì)稱,
∴BD=B′D,DQ=DQ,∠BDQ=∠B′DQ,
∴△BDQ≌△B′DQ,
∴∠BQD=∠B′QD,即直線l平分∠AQB.
【點(diǎn)評(píng)】本題考查的是兩點(diǎn)之間線段最短、線段垂直平分線的性質(zhì)及角平分線的性質(zhì),熟知各題的知識(shí)點(diǎn)是解答此題的關(guān)鍵.
25.如圖①A、E、F、C在一條直線上,AE=CF,過(guò)E、F分別作DE⊥AC,B F⊥AC,若AB=CD.
(1)圖①中有 3 對(duì)全等三角形,并把它們寫(xiě)出來(lái).
(2)求證:G是BD的中點(diǎn).
(3)若將△ABF的邊AF沿GA方向移動(dòng)變?yōu)閳D②時(shí),其余條件不變,第(2)題中的結(jié)論是否成立?如果成立,請(qǐng)予證明.
【考點(diǎn)】全等三角形的判定與性質(zhì).
【分析】(1)根據(jù)全等三角形的判定定理即可直接寫(xiě)出;
(2)首先證明△ABF≌△CDE,得到BF=DG,然后證明△DEG≌△BFG即可證得;
(3)與(2)證明方法相同.
【解答】解:(1)圖①中全等三角形有:△ABF≌△CDE,△ABG≌△CDG,△BFG≌△DEG.
故答案是:3;
(2)∵AE=CF,
∴AF=CE,
∴在直角△ABF和直角△CDE中, ,
∴△ABF≌△CDE,
∴BF=DE,
在△DEG和△BFG中, ,
∴△DEG≌△BFG,
∴BG=DG,即G是BD的中點(diǎn);
(3)結(jié)論仍成立.
理由是:)∵AE=CF,
∴AF=CE,
在直角△ABF和直角△CDE中, ,
∴△ABF≌△CDE,
∴BF=DE,
在△DEG和△BFG中, ,
∴△DEG≌△BFG,
∴BG=DG,即G是BD的中點(diǎn).
【點(diǎn)評(píng)】本題考查了全等三角新的判定與性質(zhì),證明BF=DE是解決本題的關(guān)鍵.
看了“蘇教版八年級(jí)上冊(cè)數(shù)學(xué)期末試卷2017”的人還看了:
1.八年級(jí)上冊(cè)數(shù)學(xué)期末試卷帶答案2017
2.八年級(jí)上冊(cè)數(shù)學(xué)期末試卷及答案2017
3.蘇科版八年級(jí)上冊(cè)數(shù)學(xué)期末試卷