不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級數(shù)學(xué)>

人教版八年級上冊數(shù)學(xué)期末試題(2)

時間: 妙純901 分享

  【考點】角平分線的性質(zhì);等腰直角三角形.

  【分析】由∠C=90°,根據(jù)垂直定義得到DC與AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分線定理得到DC=DE,再利用HL證明三角形ACD與三角形AED全等,根據(jù)全等三角形的對應(yīng)邊相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三邊之和表示出三角形的周長,將其中的DE換為DC,由CD+DB=BC進行變形,再將BC換為AE,由AE+EB=AB,可得出三角形BDE的周長等于AB的長,由AB的長可得出周長.

  【解答】解:∵∠C=90°,∴DC⊥AC,

  又AD平分∠CAB交BC于D,DE⊥AB,

  ∴CD=ED,

  在Rt△ACD和Rt△AED中,

  ,

  ∴Rt△ACD≌Rt△AED(HL),

  ∴AC=AE,又AC=BC,

  ∴AC=AE=BC,又AB=6cm,

  ∴△DEB的周長=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.

  故選A.

  8.化簡 的結(jié)果是(  )

  A.x+1 B.x﹣1 C.﹣x D.x

  【考點】分式的加減法.

  【分析】將分母化為同分母,通分,再將分子因式分解,約分.

  【解答】解: = ﹣

  =

  =

  =x,

  故選:D.

  9.某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺機器所需時間與原計劃生產(chǎn)450臺機器所需時間相同.設(shè)原計劃平均每天生產(chǎn)x臺機器,根據(jù)題意,下面所列方程正確的是(  )

  A. = B. = C. = D. =

  【考點】由實際問題抽象出分式方程.

  【分析】根據(jù)現(xiàn)在生產(chǎn)600臺機器的時間與原計劃生產(chǎn)450臺機器的時間相同,所以可得等量關(guān)系為:現(xiàn)在生產(chǎn)600臺機器時間=原計劃生產(chǎn)450臺時間.

  【解答】解:設(shè)原計劃每天生產(chǎn)x臺機器,則現(xiàn)在可生產(chǎn)(x+50)臺.

  依題意得: = .

  故選:A.

  10.如圖,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則三個結(jié)論①AS=AR;②QP∥AR;③△BPR≌△QSP中(  )

  A.全部正確 B.僅①和②正確 C.僅①正確 D.僅①和③正確

  【考點】角平分線的性質(zhì);全等三角形的判定與性質(zhì).

  【分析】判定線段相等的方法可以由全等三角形對應(yīng)邊相等得出;判定兩條直線平行,可以由“同位角相等,兩直線平行”或“內(nèi)錯角相等,兩直線平行”或“同旁內(nèi)角互補,兩直線平行”得出;判定全等三角形可以由SSS、SAS、ASA、AAS或HL得出.

  【解答】解:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP

  ∴△ARP≌△ASP(HL)

  ∴AS=AR,∠RAP=∠SAP

  ∵AQ=PQ

  ∴∠QPA=∠SAP

  ∴∠RAP=∠QPA

  ∴QP∥AR

  而在△BPR和△QSP中,只滿足∠BRP=∠QSP=90°和PR=PS,找不到第3個條件,所以無法得出△BPR≌△QSP

  故本題僅①和②正確.

  故選B.

  二、填空題(每小題4分,共16分)

  11.分解因式:ax4﹣9ay2= a(x2﹣3y)(x2+3y) .

  【考點】提公因式法與公式法的綜合運用.

  【分析】首先提取公因式a,進而利用平方差公式進行分解即可.

  【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).

  故答案為:a(x2﹣3y)(x2+3y).

  12.如圖,在Rt△ABC中,D,E為斜邊AB上的兩個點,且BD=BC,AE=AC,則∠DCE的大小為 45 (度).

  【考點】等腰三角形的性質(zhì).

  【分析】設(shè)∠DCE=x,∠ACD=y,則∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根據(jù)等邊對等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形內(nèi)角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.

  【解答】解:設(shè)∠DCE=x,∠ACD=y,則∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.

  ∵AE=AC,

  ∴∠ACE=∠AEC=x+y,

  ∵BD=BC,

  ∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.

  在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,

  ∴x+(90°﹣y)+(x+y)=180°,

  解得x=45°,

  ∴∠DCE=45°.

  故答案為:45.

  13.如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.給出下列結(jié)論:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正確的結(jié)論是 ①②③ .(將你認(rèn)為正確的結(jié)論的序號都填上)

  【考點】全等三角形的判定與性質(zhì).

  【分析】此題考查的是全等三角形的判定和性質(zhì)的應(yīng)用,只要先找出圖中的全等三角形就可判斷題中結(jié)論是否正確.

  【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,

  ∴△ABE≌△ACF,

  ∴AC=AB,BE=CF,即結(jié)論②正確;

  ∵AC=AB,∠B=∠C,∠CAN=∠BAM,

  ∴ACN≌△ABM,即結(jié)論③正確;

  ∵∠BAE=∠CAF,

  ∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,

  ∴∠1=∠2,即結(jié)論①正確;

  ∴△AEM≌△AFN,

  ∴AM=AN,∴CM=BN,

  ∴△CDM≌△BDN,∴CD=BD,

  ∴題中正確的結(jié)論應(yīng)該是①②③.

  故答案為:①②③.

  14.如圖,點P關(guān)于OA,OB的對稱點分別為C、D,連接CD,交OA于M,交OB于N,若CD=18cm,則△PMN的周長為 18 cm.

  【考點】軸對稱的性質(zhì).

  【分析】根據(jù)對稱軸的意義,可以求出PM=CM,ND=NP,CD=18cm,可以求出△PMN的周長.

  【解答】解:∵點P關(guān)于OA,OB的對稱點分別為C、D,連接CD,交OA于M,交OB于N,

  ∴PM=CM,ND=NP,

  ∵△PMN的周長=PN+PM+MN,PN+PM+MN=CD=18cm,

  ∴△PMN的周長=18cm.

  三、解答題(共74分)

  15.分解因式:(x﹣1)(x﹣3)+1.

  【考點】因式分解-運用公式法.

  【分析】首先利用多項式乘法計算出(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后變形成x2﹣4x+4,然后再利用完全平方公式進行分解即可.

  【解答】解:原式=x2﹣4x+3+1,

  =x2﹣4x+4,

  =(x﹣2)2.

  16.解方程: = .

  【考點】解分式方程.

  【分析】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.

  【解答】解:去分母得:x2+2x﹣x2+4=8,

  移項合并得:2x=4,

  解得:x=2,

  經(jīng)檢驗x=2是增根,分式方程無解.

  17.先化簡,再求值:( ﹣ )÷ ,在﹣2,0,1,2四個數(shù)中選一個合適的代入求值.

  【考點】分式的化簡求值.

  【分析】原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,將x=1代入計算即可求出值.

  【解答】解:原式= • =2x+8,

  當(dāng)x=1時,原式=2+8=10.

  18.如圖,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度數(shù).

  【考點】平行線的性質(zhì).

  【分析】根據(jù)兩直線平行,同旁內(nèi)角互補求出∠BAF,再根據(jù)角平分線的定義求出∠CAF,然后根據(jù)兩直線平行,內(nèi)錯角相等解答.

  【解答】解:∵EF∥BC,

  ∴∠BAF=180°﹣∠B=100°,

  ∵AC平分∠BAF,

  ∴∠CAF= ∠BAF=50°,

  ∵EF∥BC,

  ∴∠C=∠CAF=50°.

  19.如圖,在邊長為1個單位長度的小正方形網(wǎng)格中,給出了△ABC(頂點是網(wǎng)格線的交點).

  (1)請畫出△ABC關(guān)于直線l對稱的△A1B1C1;

  (2)將線段AC向左平移3個單位,再向下平移5個單位,畫出平移得到的線段A2C2,并以它為一邊作一個格點△A2B2C2,使A2B2=C2B2.

  【考點】作圖-軸對稱變換;作圖-平移變換.

  【分析】(1)利用軸對稱圖形的性質(zhì)得出對應(yīng)點位置進而得出答案;

  (2)直接利用平移的性質(zhì)得出平移后對應(yīng)點位置進而得出答案.

  【解答】解:(1)如圖所示:△A1B1C1,即為所求;

  (2)如圖所示:△A2B2C2,即為所求.

  20.如圖,在Rt△ABC中,∠ABC=90°,點D在邊AB上,使DB=BC,過點D作EF⊥AC,分別交AC于點E,CB的延長線于點F.

  求證:AB=BF.

  【考點】全等三角形的判定與性質(zhì).

  【分析】根據(jù)EF⊥AC,得∠F+∠C=90°,再由已知得∠A=∠F,從而AAS證明△FBD≌△ABC,則AB=BF.

  【解答】證明:∵EF⊥AC,

  ∴∠F+∠C=90°,

  ∵∠A+∠C=90°,

  ∴∠A=∠F,

  在△FBD和△ABC中,

  ,

  ∴△FBD≌△ABC(AAS),

  ∴AB=BF.

  21.從廣州到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.

  (1)求普通列車的行駛路程;

  (2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.

  【考點】分式方程的應(yīng)用.

  【分析】(1)根據(jù)高鐵的行駛路程是400千米和普通列車的行駛路程是高鐵的行駛路程的1.3倍,兩數(shù)相乘即可得出答案;

  (2)設(shè)普通列車平均速度是x千米/時,根據(jù)高鐵所需時間比乘坐普通列車所需時間縮短3小時,列出分式方程,然后求解即可;

  【解答】解:(1)根據(jù)題意得:

  400×1.3=520(千米),

  答:普通列車的行駛路程是520千米;

  (2)設(shè)普通列車平均速度是x千米/時,則高鐵平均速度是2.5x千米/時,根據(jù)題意得:

  ﹣ =3,

  解得:x=120,

  經(jīng)檢驗x=120是原方程的解,

  則高鐵的平均速度是120×2.5=300(千米/時),

  答:高鐵的平均速度是300千米/時.

  22.如圖,點D在△ABC的AB邊上,且∠ACD=∠A.

  (1)作∠BDC的平分線DE,交BC于點E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);

  (2)在(1)的條件下,判斷直線DE與直線AC的位置關(guān)系(不要求證明).

  【考點】作圖—基本作圖;平行線的判定.

  【分析】(1)根據(jù)角平分線基本作圖的作法作圖即可;

  (2)根據(jù)角平分線的性質(zhì)可得∠BDE= ∠BDC,根據(jù)三角形內(nèi)角與外角的性質(zhì)可得∠A= ∠BDC,再根據(jù)同位角相等兩直線平行可得結(jié)論.

  【解答】解:(1)如圖所示:

  (2)DE∥AC

  ∵DE平分∠BDC,

  ∴∠BDE= ∠BDC,

  ∵∠ACD=∠A,∠ACD+∠A=∠BDC,

  ∴∠A= ∠BDC,

  ∴∠A=∠BDE,

  ∴DE∥AC.

  23.如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.

  (1)求證:BG=CF;

  (2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.

  【考點】全等三角形的判定與性質(zhì).

  【分析】(1)先利用ASA判定△BGD≌△CFD,從而得出BG=CF;

  (2)再利用全等的性質(zhì)可得GD=FD,再有DE⊥GF,從而得出EG=EF,兩邊和大于第三邊從而得出BE+CF>EF.

  【解答】解:(1)∵BG∥AC,

  ∴∠DBG=∠DCF.

  ∵D為BC的中點,

  ∴BD=CD

  又∵∠BDG=∠CDF,

  在△BGD與△CFD中,

  ∵

  ∴△BGD≌△CFD(ASA).

  ∴BG=CF.

  (2)BE+CF>EF.

  ∵△BGD≌△CFD,

  ∴GD=FD,BG=CF.

  又∵DE⊥FG,

  ∴EG=EF(垂直平分線到線段端點的距離相等).

  ∴在△EBG中,BE+BG>EG,

  即BE+CF>EF.

  看了“人教版八年級上冊數(shù)學(xué)期末試題”的人還看了:

1.人教版八年級上冊數(shù)學(xué)期末試卷及答案

2.八年級上冊數(shù)學(xué)期末試卷附答案

3.八年級數(shù)學(xué)上冊期末試卷及答案

4.八年級上冊數(shù)學(xué)期末模擬試題

5.八年級上冊數(shù)學(xué)期末試卷及答案

人教版八年級上冊數(shù)學(xué)期末試題(2)

【考點】角平分線的性質(zhì);等腰直角三角形. 【分析】由C=90,根據(jù)垂直定義得到DC與AC垂直,又AD平分CAB交BC于D,DEAB,利用角平分線定理得到DC=DE,再利用H
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 人教版八年級上冊數(shù)學(xué)期末試卷
    人教版八年級上冊數(shù)學(xué)期末試卷

    此刻打盹,你將做夢;而此刻學(xué)習(xí),你將圓夢。祝你八年級數(shù)學(xué)期末考試取得好成績,期待你的成功!下面是學(xué)習(xí)啦小編為大家精心推薦的人教版八年級上冊

  • 冀教版八年級數(shù)學(xué)上冊期末試卷
    冀教版八年級數(shù)學(xué)上冊期末試卷

    放下包袱開動腦筋,勤于思考好好復(fù)習(xí),祝你八年級數(shù)學(xué)期末考試取得好成績,期待你的成功!下面是學(xué)習(xí)啦小編為大家精心推薦的冀教版八年級數(shù)學(xué)上冊期

  • 魯教版初中數(shù)學(xué)八年級上冊期末測試題
    魯教版初中數(shù)學(xué)八年級上冊期末測試題

    有道是:天道籌勤!相信自己吧!祝你八年級數(shù)學(xué)期末考試順利通過,小編整理了關(guān)于魯教版初中數(shù)學(xué)八年級上冊期末測試題,希望對大家有幫助! 魯教版初中

  • 人教版八年級上數(shù)學(xué)期末考試試卷
    人教版八年級上數(shù)學(xué)期末考試試卷

    樂學(xué)實學(xué),挑戰(zhàn)考試;勤勉向上,成就自我。祝你八年級數(shù)學(xué)期末考試成功!下面是小編為大家精心整理的人教版八年級上數(shù)學(xué)期末考試試卷,僅供參考。 人

2593307