七年級上冊數(shù)學(xué)知識點
學(xué)習(xí)知識容易,轉(zhuǎn)化成為能力很難;提出問題容易,得到圓滿答復(fù)很難;點評別人容易,身臨其境去做很難;指責(zé)同事容易,正確評價自己很難。下面小編給大家分享一些七年級上冊數(shù)學(xué)知識點,希望能夠幫助大家!
七年級上冊數(shù)學(xué)知識點
有理數(shù)的乘除法
1.有理數(shù)的乘法法則
法則一:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(“同號得正,異號得負(fù)”專指“兩數(shù)相乘”的情況,如果因數(shù)超過兩個,就必須運用法則三)
法則二:任何數(shù)同0相乘,都得0;
法則三:幾個不是0的數(shù)相乘,負(fù)因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負(fù)因數(shù)的個數(shù)是奇數(shù)時,積是負(fù)數(shù);
法則四:幾個數(shù)相乘,如果其中有因數(shù)為0,則積等于0.
2.倒數(shù)
乘積是1的兩個數(shù)互為倒數(shù),其中一個數(shù)叫做另一個數(shù)的倒數(shù),用式子表示為a·=1(a≠0),就是說a和互為倒數(shù),即a是的倒數(shù),是a的倒數(shù)。
互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負(fù)倒數(shù).
注意:①0沒有倒數(shù);
②求假分?jǐn)?shù)或真分?jǐn)?shù)的倒數(shù),只要把這個分?jǐn)?shù)的分子、分母點顛倒位置即可;求帶分?jǐn)?shù)的倒數(shù)時,先把帶分?jǐn)?shù)化為假分?jǐn)?shù),再把分子、分母顛倒位置;
③正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(求一個數(shù)的倒數(shù),不改變這個數(shù)的性質(zhì));
④倒數(shù)等于它本身的數(shù)是1或-1,不包括0。
3.有理數(shù)的乘法運算律
⑴乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。即ab=ba
⑵乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。即(ab)c=a(bc).
⑶乘法分配律:一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,在把積相加。即a(b+c)=ab+ac
4.有理數(shù)的除法法則
(1)除以一個不等0的數(shù),等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),
(2)兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0
5.有理數(shù)的乘除混合運算
(1)乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。
(2)有理數(shù)的加減乘除混合運算,如無括號指出先做什么運算,則按照‘先乘除,后加減’的順序進行。
七年級上冊數(shù)學(xué)知識點匯總
絕對值
⒈絕對值的幾何定義
一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作|a|。
2.絕對值的代數(shù)定義
⑴一個正數(shù)的絕對值是它本身; ⑵一個負(fù)數(shù)的絕對值是它的相反數(shù); ⑶0的絕對值是0.
可用字母表示為:
①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。
可歸納為①:a≥0,<═> |a|=a (非負(fù)數(shù)的絕對值等于本身;絕對值等于本身的數(shù)是非負(fù)數(shù)。)
②a≤0,<═> |a|=-a (非正數(shù)的絕對值等于其相反數(shù);絕對值等于其相反數(shù)的數(shù)是非正數(shù)。)
3.絕對值的性質(zhì)
任何一個有理數(shù)的絕對值都是非負(fù)數(shù),也就是說絕對值具有非負(fù)性。所以,a取任何有理數(shù),都有|a|≥0。即 (1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;絕對值是0的數(shù)是0.即:a=0 <═> |a|=0;
⑵一個數(shù)的絕對值是非負(fù)數(shù),絕對值最小的數(shù)是0.絕對值可表示為:或 ;即:|a|≥0;絕對值的問題經(jīng)常分類討論;
⑶任何數(shù)的絕對值都不小于原數(shù)。即:|a|≥a; ; ;
⑷絕對值是相同正數(shù)的數(shù)有兩個,它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;
⑸互為相反數(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,
⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;
⑺若幾個數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。
(非負(fù)數(shù)的常用性質(zhì):若幾個非負(fù)數(shù)的和為0,則有且只有這幾個非負(fù)數(shù)同時為0)
4.有理數(shù)大小的比較
⑴利用數(shù)軸比較兩個數(shù)的大?。簲?shù)軸上的兩個數(shù)相比較,左邊的數(shù)總比右邊的數(shù)小,或者右邊的數(shù)總比左邊的數(shù)大
⑵利用絕對值比較兩個負(fù)數(shù)的大小:兩個負(fù)數(shù)比較大小,絕對值大的反而小;異號兩數(shù)比較大小,正數(shù)大于負(fù)數(shù)。
(3)正數(shù)的絕對值越大,這個數(shù)越大;
(4)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(5)正數(shù)大于一切負(fù)數(shù);
(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.
5.絕對值的化簡
①當(dāng)a≥0時, |a|=a ; ②當(dāng)a≤0時, |a|=-a
6.已知一個數(shù)的絕對值,求這個數(shù)
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離,一般地,絕對值為同一個正數(shù)的有理數(shù)有兩個,它們互為相反數(shù),絕對值為0的數(shù)是0,沒有絕對值為負(fù)數(shù)的數(shù)。
七年級上冊數(shù)學(xué)知識點梳理
有理數(shù)的加減法.
1.有理數(shù)的加法法則
⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加;
⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;
⑶互為相反數(shù)的兩數(shù)相加,和為零;
⑷一個數(shù)與0相加,仍得這個數(shù)。
2.有理數(shù)加法的運算律
⑴加法交換律:a+b=b+a
⑵加法結(jié)合律:(a+b)+c=a+(b+c)
在運用運算律時,一定要根據(jù)需要靈活運用,以達到化簡的目的,通常有下列規(guī)律:
①互為相反數(shù)的兩個數(shù)先相加——“相反數(shù)結(jié)合法”;
②符號相同的兩個數(shù)先相加——“同號結(jié)合法”;
③分母相同的數(shù)先相加——“同分母結(jié)合法”;
④幾個數(shù)相加得到整數(shù),先相加——“湊整法”;
⑤整數(shù)與整數(shù)、小數(shù)與小數(shù)相加——“同形結(jié)合法”。
3.加法性質(zhì)
一個數(shù)加正數(shù)后的和比原數(shù)大;加負(fù)數(shù)后的和比原數(shù)小;加0后的和等于原數(shù)。即:
⑴當(dāng)b>0時,a+b>a ⑵當(dāng)b<0時,a+b
4.有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù)。用字母表示為:a-b=a+(-b)。
5.有理數(shù)加減法統(tǒng)一成加法的意義
在有理數(shù)加減法混合運算中,根據(jù)有理數(shù)減法法則,可以將減法轉(zhuǎn)化成加法后,再按照加法法則進行計算。
在和式里,通常把各個加數(shù)的括號和它前面的加號省略不寫,寫成省略加號的和的形式。如:
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的讀法:①按這個式子表示的意義讀作“負(fù)8、負(fù)7、負(fù)6、正5的和”
②按運算意義讀作“負(fù)8減7減6加5”
6.有理數(shù)加減混合運算中運用結(jié)合律時的一些技巧
七年級上冊數(shù)學(xué)知識點總結(jié)
相反數(shù)
⒈相反數(shù)
只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。
注意:⑴相反數(shù)是成對出現(xiàn)的;⑵相反數(shù)只有符號不同,若一個為正,則另一個為負(fù);
⑶0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。
2.相反數(shù)的性質(zhì)與判定
⑴任何數(shù)都有相反數(shù),且只有一個;
⑵0的相反數(shù)是0;
⑶互為相反數(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0
3.相反數(shù)的幾何意義
在數(shù)軸上與原點距離相等的兩點表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應(yīng)點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數(shù)對應(yīng)原點;原點表示0的相反數(shù)。
說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關(guān)于原點對稱。
4.相反數(shù)的求法
⑴求一個數(shù)的相反數(shù),只要在它的前面添上負(fù)號“-”即可求得(如:5的相反數(shù)是-5);0的相反數(shù)還是0;
⑵求多個數(shù)的和或差的相反數(shù)是,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數(shù)是-(5a+b)?;喌?5a-b);注意: a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
⑶求前面帶“-”的單個數(shù),也應(yīng)先用括號括起來再添“-”,然后化簡(如:-5的相反數(shù)是-(-5),化簡得5);)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù)
5.相反數(shù)的表示方法
⑴一般地,數(shù)a 的相反數(shù)是-a ,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。
當(dāng)a>0時,-a<0(正數(shù)的相反數(shù)是負(fù)數(shù))
當(dāng)a<0時,-a>0(負(fù)數(shù)的相反數(shù)是正數(shù))
當(dāng)a=0時,-a=0,(0的相反數(shù)是0)
6.多重符號的化簡
多重符號的化簡規(guī)律:“+”號的個數(shù)不影響化簡的結(jié)果,可以直接省略;“-”號的個數(shù)決定最后化簡結(jié)果;即:“-”的個數(shù)是奇數(shù)時,結(jié)果為負(fù),“-”的個數(shù)是偶數(shù)時,結(jié)果為正。
七年級上冊數(shù)學(xué)知識點歸納
數(shù)軸
⒈數(shù)軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。
注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。
2.數(shù)軸上的點與有理數(shù)的關(guān)系
⑴所有的有理數(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,0用原點表示。
⑵所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))
3.利用數(shù)軸表示兩數(shù)大小
⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
⑶兩個負(fù)數(shù)比較,距離原點遠(yuǎn)的數(shù)比距離原點近的數(shù)小。
4.數(shù)軸上特殊的最大(小)數(shù)
⑴最小的自然數(shù)是0,無最大的自然數(shù);
⑵最小的正整數(shù)是1,無最大的正整數(shù);
⑶最大的負(fù)整數(shù)是-1,無最小的負(fù)整數(shù)
5.a可以表示什么數(shù)
⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0;
⑵a<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
⑶a=0表示a是0;反之,a是0,,則a=0
6.數(shù)軸上點的移動規(guī)律
根據(jù)點的移動,向左移動幾個單位長度則減去幾,向右移動幾個單位長度則加上幾,從而得到所需的點的位置。
七年級上冊數(shù)學(xué)知識點相關(guān)文章:
★ 七年級上冊數(shù)學(xué)知識點總結(jié)三篇
★ 七年級上冊數(shù)學(xué)全冊概念總結(jié)復(fù)習(xí)