不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>學(xué)習(xí)經(jīng)驗(yàn)>

高中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)

時(shí)間: 維維0 分享

一般地,形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù)叫做一次函數(shù)。其中x是自變量,y是因變量,k為一次項(xiàng)系數(shù),y是x的函數(shù)。下面小編給大家分享一些高中數(shù)學(xué)一次函數(shù)知識(shí),希望能夠幫助大家,歡迎閱讀!

高中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)

一、定義與定義式:

自變量x和因變量y有如下關(guān)系:

y=kx+b

則此時(shí)稱y是x的一次函數(shù)。

特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

即:y=kx(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過如下3個(gè)步驟

(1)列表;

(2)描點(diǎn);

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b.(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

3.k,b與函數(shù)圖像所在象限:

當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。

當(dāng)b>0時(shí),直線必通過一、二象限;

當(dāng)b=0時(shí),直線通過原點(diǎn)

當(dāng)b<0時(shí),直線必通過三、四象限。

特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限

四、確定一次函數(shù)的表達(dá)式:

已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b.

(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b.所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個(gè)二元一次方程,得到k,b的值。

(4)最后得到一次函數(shù)的表達(dá)式。

五、一次函數(shù)在生活中的應(yīng)用:

1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt.

2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S.g=S-ft.

六、常用公式:(不全,希望有人補(bǔ)充)

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

高中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)大全

一次函數(shù)在生活中的應(yīng)用:

1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

常用公式:

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

確定一次函數(shù)的表達(dá)式:

已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個(gè)二元一次方程,得到k,b的值。

(4)最后得到一次函數(shù)的表達(dá)式。

高中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)

如何學(xué)好高中數(shù)學(xué)的方法

一、初中數(shù)學(xué)與高中數(shù)學(xué)的差異

1、知識(shí)差異。初中數(shù)學(xué)知識(shí)少、淺、難度容易、知識(shí)面笮。高中數(shù)學(xué)知識(shí)廣泛,將對(duì)初中的數(shù)學(xué)知識(shí)推廣和引伸,也是對(duì)初中數(shù)學(xué)知識(shí)的完善。

2、學(xué)習(xí)方法的差異。初中學(xué)生模仿做題,反復(fù)訓(xùn)練。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢(shì),對(duì)高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對(duì)創(chuàng)造精神。

3、學(xué)生自學(xué)能力的差異。初中學(xué)生自學(xué)能力低,基本上學(xué)生不需自學(xué)。但高中的知識(shí)面廣,知識(shí)全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,學(xué)生必須自學(xué)才能深刻理解和創(chuàng)新來適應(yīng)。

4、思維習(xí)慣上的差異。初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識(shí)的范圍小,知識(shí)層次低,知識(shí)面笮,對(duì)實(shí)際問題的思維受到了局限。高中數(shù)學(xué)知識(shí)的多元化和廣泛性,將會(huì)使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維,提高學(xué)生的思維遞進(jìn)性。

5、定量與變量的差異。初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。在高中數(shù)學(xué)學(xué)習(xí)中我們將會(huì)大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。

高中數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)相關(guān)文章

高一數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)小結(jié)

高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

高一數(shù)學(xué)一次函數(shù)易錯(cuò)知識(shí)點(diǎn)總結(jié)及三角函數(shù)易錯(cuò)知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)匯總

高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

高考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)函數(shù)知識(shí)歸納總結(jié)

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)

高考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)匯總

906571