不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>學(xué)習(xí)經(jīng)驗(yàn)>

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)

時(shí)間: 維維0 分享

一般的,在一個(gè)變化過(guò)程中,假設(shè)有兩個(gè)變量x、y,如果對(duì)于任意一個(gè)x都有唯一確定的一個(gè)y和它對(duì)應(yīng),那么就稱y是x的函數(shù),其中x是自變量,y是因變量,x的取值范圍叫做這個(gè)函數(shù)的定義域,相應(yīng)y的取值范圍叫做函數(shù)的值域。下面小編給大家分享一些高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn),希望能夠幫助大家,歡迎閱讀!

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)

一、一次函數(shù)定義與定義式:

自變量x和因變量y有如下關(guān)系:

y=kx+b

則此時(shí)稱y是x的一次函數(shù)。

特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

即:y=kx(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過(guò)如下3個(gè)步驟

(1)列表;

(2)描點(diǎn);

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

3.k,b與函數(shù)圖像所在象限:

當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;

當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。

當(dāng)b>0時(shí),直線必通過(guò)一、二象限;

當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)

當(dāng)b<0時(shí),直線必通過(guò)三、四象限。

特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。

四、確定一次函數(shù)的表達(dá)式:

已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。

(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個(gè)二元一次方程,得到k,b的值。

(4)最后得到一次函數(shù)的表達(dá)式。

五、一次函數(shù)在生活中的應(yīng)用:

1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

六、常用公式:

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

4.求任意線段的長(zhǎng):√(x1-x2)’2+(y1-y2)’2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)梳理

二次函數(shù)

I.定義與定義表達(dá)式

一般地,自變量x和因變量y之間存在如下關(guān)系:

y=ax’2+bx+c

(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

則稱y為x的二次函數(shù)。

二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

II.二次函數(shù)的三種表達(dá)式

一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)

頂點(diǎn)式:y=a(x-h)’2+k[拋物線的頂點(diǎn)P(h,k)]

交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

III.二次函數(shù)的圖像

在平面直角坐標(biāo)系中作出二次函數(shù)y=x’2的圖像,

可以看出,二次函數(shù)的圖像是一條拋物線。

IV.拋物線的性質(zhì)

1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

x=-b/2a。

對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

P(-b/2a,(4ac-b’2)/4a)

當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2-4ac=0時(shí),P在x軸上。

3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

|a|越大,則拋物線的開(kāi)口越小。

4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點(diǎn)個(gè)數(shù)

Δ=b’2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

Δ=b’2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

Δ=b’2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

V.二次函數(shù)與一元二次方程

特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,

當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

即ax’2+bx+c=0

此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。

函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

反比例函數(shù)

形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

反比例函數(shù)圖像性質(zhì):

反比例函數(shù)的圖像為雙曲線。

由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。

當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)

當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)

反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

知識(shí)點(diǎn):

1.過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

對(duì)數(shù)函數(shù)

對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。

(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

(5)顯然對(duì)數(shù)函數(shù)無(wú)界。

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)相關(guān)文章

高三數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

高一函數(shù)知識(shí)點(diǎn)總結(jié)歸納

高一函數(shù)知識(shí)點(diǎn)總結(jié)必看

高中數(shù)學(xué)學(xué)習(xí)方法:知識(shí)點(diǎn)總結(jié)最全版

高二數(shù)學(xué)必修一函數(shù)的概念知識(shí)點(diǎn)與學(xué)習(xí)方法

高中數(shù)學(xué)知識(shí)點(diǎn)大全

高一函數(shù)知識(shí)點(diǎn)總結(jié)大全

高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)

高中數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理

888307