不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > > 關(guān)于高一數(shù)學(xué)的教案

關(guān)于高一數(shù)學(xué)的教案

時間: 康華0 分享

關(guān)于高一數(shù)學(xué)的教案5篇

讓我們快樂地學(xué)習(xí),快樂地成長,讓我們從今天開始認(rèn)認(rèn)真真地學(xué)習(xí),在學(xué)習(xí)中去體會真正的快樂!下面是小編為大家整理的關(guān)于高一數(shù)學(xué)的教案,如果大家喜歡可以分享給身邊的朋友。

關(guān)于高一數(shù)學(xué)的教案

關(guān)于高一數(shù)學(xué)的教案精選篇1

一、教材

《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。

二、學(xué)情

學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點的坐標(biāo)、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標(biāo)法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

三、教學(xué)目標(biāo)

(一)知識與技能目標(biāo)

能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。

(二)過程與方法目標(biāo)

經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

(三)情感態(tài)度價值觀目標(biāo)

激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。

四、教學(xué)重難點

(一)重點

用解析法研究直線與圓的位置關(guān)系。

(二)難點

體會用解析法解決問題的數(shù)學(xué)思想。

五、教學(xué)方法

根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的.方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。

六、教學(xué)過程

(一)導(dǎo)入新課

教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。

設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。

(二)新課教學(xué)——探究新知

教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認(rèn)識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。

判斷方法:

(1)定義法:看直線與圓公共點個數(shù)

即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

(2)比較法:圓心到直線的距離d與圓的半徑r做比較,

(三)合作探究——深化新知

教師進一步拋出疑問,對比兩種方法,由學(xué)生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。

已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。

當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關(guān)系。最后明確解題步驟。

(四)歸納總結(jié)——鞏固新知

為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:

可由方程組的解的不同情況來判斷:

當(dāng)方程組有兩組實數(shù)解時,直線l與圓C相交;

當(dāng)方程組有一組實數(shù)解時,直線l與圓C相切;

當(dāng)方程組沒有實數(shù)解時,直線l與圓C相離。

活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習(xí)的信心。

(五)小結(jié)作業(yè)

在小結(jié)環(huán)節(jié),我會以口頭提問的方式:

(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

(2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?

設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進行主動建構(gòu)。

作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進一步的探究,下一節(jié)課匯報。

七、板書設(shè)計

我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。

關(guān)于高一數(shù)學(xué)的教案精選篇2

教學(xué)目標(biāo):

1.進一步理解對數(shù)函數(shù)的性質(zhì),能運用對數(shù)函數(shù)的相關(guān)性質(zhì)解決對數(shù)型函數(shù)的常見問題.

2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.

教學(xué)重點:

對數(shù)函數(shù)性質(zhì)的應(yīng)用.

教學(xué)難點:

對數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.

教學(xué)過程:

一、問題情境

1.復(fù)習(xí)對數(shù)函數(shù)的性質(zhì).

2.回答下列問題.

(1)函數(shù)y=log2x的值域是 ;

(2)函數(shù)y=log2x(x≥1)的值域是 ;

(3)函數(shù)y=log2x(0

3.情境問題.

函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?

二、學(xué)生活動

探究完成情境問題.

三、數(shù)學(xué)運用

例1 求函數(shù)y=log2(x2+2x+2)的'定義域和值域.

練習(xí):

(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.

(2)函數(shù) ,x(0,8]的值域是 .

(3)函數(shù)y=log (x2-6x+17)的值域 .

(4)函數(shù) 的值域是_______________.

例2 判斷下列函數(shù)的奇偶性:

(1)f (x)=lg (2)f (x)=ln( -x)

例3 已知loga 0.75>1,試求實數(shù)a 取值范圍.

例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).

(1)求函數(shù)的定義域與值域;

(2)求函數(shù)的單調(diào)區(qū)間.

練習(xí):

1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結(jié)論的序號).

2.函數(shù)y=lg( -1)的圖象關(guān)于 對稱.

3.已知函數(shù) (a>0,a≠1)的圖象關(guān)于原點對稱,那么實數(shù)m= .

4.求函數(shù) ,其中x [ ,9]的值域.

四、要點歸納與方法小結(jié)

(1)借助于對數(shù)函數(shù)的性質(zhì)研究對數(shù)型函數(shù)的定義域與值域;

(2)換元法;

(3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).

五、作業(yè)

課本P70~71-4,5,10,11.

關(guān)于高一數(shù)學(xué)的教案精選篇3

學(xué)習(xí)目標(biāo)

1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)

2、掌握標(biāo)準(zhǔn)方程中的幾何意義

3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題

一、預(yù)習(xí)檢查

1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

2、頂點間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

3、雙曲線的漸進線方程為、

4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、

二、問題探究

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

(1)過點,離心率、

(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、

例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、

例3(理)求離心率為,且過點的'雙曲線標(biāo)準(zhǔn)方程、

三、思維訓(xùn)練

1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設(shè)直線的斜率是、

2、橢圓的離心率為,則雙曲線的離心率為、

3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、

4、(理)設(shè)是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、

四、知識鞏固

1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、

2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點,相應(yīng)的焦點為,若以為直徑的圓恰好過點,則離心率為、

3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、

4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、

5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、

關(guān)于高一數(shù)學(xué)的教案精選篇4

【內(nèi)容與解析】

本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號的理解,理解它關(guān)鍵就是能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過了集合并且初中對函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點是函數(shù)的概念,函數(shù)的三要素,所以解決重點的關(guān)鍵是通過實例領(lǐng)悟構(gòu)成函數(shù)的三個要素;會求一些簡單函數(shù)的定義域和值域。

【教學(xué)目標(biāo)與解析】

1、教學(xué)目標(biāo)

(1)理解函數(shù)的概念;

(2)了解區(qū)間的概念;

2、目標(biāo)解析

(1)理解函數(shù)的概念就是指能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;

【問題診斷分析】

在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。

【教學(xué)過程】

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的`高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有唯一的一個高度h與之對應(yīng)。

問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個臭氧層空洞面積S與之相對應(yīng)。

問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。

設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

問題4:上述三個實例中變量之間的關(guān)系都是函數(shù),那么從集合與對應(yīng)的觀點分析,函數(shù)還可以怎樣定義?

4.1在一個函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個集合分別叫什么名稱?

4.2在從集合A到集合B的一個函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?

4.3一個函數(shù)由哪幾個部分組成?如果給定函數(shù)的定義域和對應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個函數(shù)相等的條件是什么?

【例題】:

例1求下列函數(shù)的定義域

分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!

例2已知函數(shù)

分析:理解函數(shù)f(x)的意義

例3下列函數(shù)中哪個與函數(shù)相等?

例4在下列各組函數(shù)中與是否相等?為什么?

分析:

(1)兩個函數(shù)相等,要求定義域和對應(yīng)關(guān)系都一致;

(2)用x還是用其它字母來表示自變量對函數(shù)實質(zhì)而言沒有影響.

【課堂目標(biāo)檢1測】

教科書第19頁1、2.

【課堂小結(jié)】

1、理解函數(shù)的定義,函數(shù)的三要素,會球簡單的函數(shù)的定義域和函數(shù)值;

2、理解區(qū)間是表示數(shù)集的一種方法,會把不等式轉(zhuǎn)化為區(qū)間。

關(guān)于高一數(shù)學(xué)的教案精選篇5

一、課標(biāo)要求:

理解充分條件、必要條件與充要條件的意義,會判斷充分條件、必要條件與充要條件.

二、知識與方法回顧:

1、充分條件、必要條件與充要條件的概念:

2、從邏輯推理關(guān)系上看充分不必要條件、必要不充分條件與充要條件:

3、從集合與集合之間關(guān)系上看充分條件、必要條件與充要條件:

4、特殊值法:判斷充分條件與必要條件時,往往用特殊值法來否定結(jié)論

5、化歸思想:

表示p等價于q,等價命題可以進行相互轉(zhuǎn)化,當(dāng)我們要證明p成立時,就可以轉(zhuǎn)化為證明q成立;

這里要注意原命題 逆否命題、逆命題 否命題只是等價形式之一,對于條件或結(jié)論是不等式關(guān)系(否定式)的命題一般應(yīng)用化歸思想.

6、數(shù)形結(jié)合思想:

利用韋恩圖(即集合的包含關(guān)系)來判斷充分不必要條件,必要不充分條件,充要條件.

三、基礎(chǔ)訓(xùn)練:

1、 設(shè)命題若p則q為假,而若q則p為真,則p是q的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

2、 設(shè)集合M,N為是全集U的兩個子集,則 是 的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

3、 若 是實數(shù),則 是 的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

四、例題講解

例1 已知實系數(shù)一元二次方程 ,下列結(jié)論中正確的是 ( )

(1) 是這個方程有實根的充分不必要條件

(2) 是這個方程有實根的必要不充分條件

(3) 是這個方程有實根的.充要條件

(4) 是這個方程有實根的充分不必要條件

A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

例2 (1)已知h 0,a,bR,設(shè)命題甲: ,命題乙: 且 ,問甲是乙的 ( )

(2)已知p:兩條直線的斜率互為負(fù)倒數(shù),q:兩條直線互相垂直,則p是q的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

變式:a = 0是直線 與 平行的 條件;

例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s

的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.

例4 設(shè)命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實數(shù)a的取值范圍;

例5 設(shè) 是方程 的兩個實根,試分析 是兩實根 均大于1的什么條件?并給予證明.

五、課堂練習(xí)

1、設(shè)命題p: ,命題q: ,則p是q的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

2、給出以下四個命題:①若p則q②若﹁r則﹁q③ 若r則﹁s

④若﹁s則q若它們都是真命題,則﹁p是s的 條件;

3、是否存在實數(shù)p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說明理由.

六、課堂小結(jié):

七、教學(xué)后記:

高三 班 學(xué)號 姓名 日期: 月 日

1、 A B是AB=B的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

2、 是 的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

3、 2x2-5x-30的一個必要不充分條件是 ( )

A.-

4、2且b是a+b4且ab的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

5、設(shè)a1、b1、c1、a2、b2、c2均為非零實數(shù),不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么 是 M=N 的 ( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分又不必要條件

6、若命題A: ,命題B: ,則命題A是B的 條件;

7、設(shè)條件p:|x|=x,條件q:x2-x,則p是q的 條件;

8、方程mx2+2x+1=0至少有一個負(fù)根的充要條件是 ;

9、關(guān)于x的方程x2+mx+n = 0有兩個小于1的正根的一個充要條件是 ;

10、已知 ,求證: 的充要條件是 ;

11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實數(shù)m的取值范圍。

12、已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

(1)方程有兩個正根的充要條件;

(2)方程至少有一正根的充要條件.

1984398