不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 視頻教程 > 數(shù)學(xué)教程 >

高中數(shù)學(xué)教學(xué)設(shè)計(jì)

時(shí)間: 航就0 分享

教案對(duì)于教師在熟悉不過(guò)吧,看一下怎么寫(xiě)吧。在現(xiàn)實(shí)社會(huì)中,教學(xué)是重要的工作之一,所謂反思就是能夠迅速?gòu)囊粋€(gè)場(chǎng)景和事態(tài)中抽身出來(lái),看自己在前一個(gè)場(chǎng)景和事態(tài)中自己的表現(xiàn)。反思應(yīng)該怎么寫(xiě)呢?下面是小編為大家收集的高中數(shù)學(xué)教學(xué)設(shè)計(jì),歡迎大家分享。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)篇1

教學(xué)目標(biāo)

1、掌握平面向量的數(shù)量積及其幾何意義;

2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

3、了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問(wèn)題;

4、掌握向量垂直的條件。

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):平面向量的數(shù)量積定義

教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)工具

投影儀

教學(xué)過(guò)程

一、復(fù)習(xí)引入:

1、向量共線(xiàn)定理向量與非零向量共線(xiàn)的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ

五,課堂小結(jié)

(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

六、課后作業(yè)

P107習(xí)題2.4A組2、7題

課后小結(jié)

(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

課后習(xí)題

作業(yè)

P107習(xí)題2.4A組2、7題

高中數(shù)學(xué)教學(xué)設(shè)計(jì)篇2

一、教學(xué)目標(biāo)

1、把握菱形的判定。

2、通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力。

3、通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛(ài)好。

4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫(huà)圖向?qū)W生滲透集合思想。

二、教法設(shè)計(jì)

觀察分析討論相結(jié)合的方法

三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

1、教學(xué)重點(diǎn):菱形的判定方法。

2、教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用。

四、課時(shí)安排

1課時(shí)

五、教具學(xué)具預(yù)備

教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫(huà)圖工具

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥

七、教學(xué)步驟

復(fù)習(xí)提問(wèn)

1、敘述菱形的定義與性質(zhì)。

2、菱形兩鄰角的比為1:2,較長(zhǎng)對(duì)角線(xiàn)為,則對(duì)角線(xiàn)交點(diǎn)到一邊距離為_(kāi)_______.

引入新課

師問(wèn):要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法。

此外還有別的兩種判定方法,下面就來(lái)學(xué)習(xí)這兩種方法。

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形。

菱形判定定理2:對(duì)角錢(qián)互相垂直的'平行四邊形是菱形。圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形。

分析判定2:

師問(wèn):本定理有幾個(gè)條件?

生答:兩個(gè)。

師問(wèn):哪兩個(gè)?

生答:(1)是平行四邊形(2)兩條對(duì)角線(xiàn)互相垂直。

師問(wèn):再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等。

(由學(xué)生口述證實(shí))

證實(shí)時(shí)讓學(xué)生注重線(xiàn)段垂直平分線(xiàn)在這里的應(yīng)用,

師問(wèn):對(duì)角線(xiàn)互相垂直的四邊形是菱形嗎?為什么?

可畫(huà)出圖,顯然對(duì)角線(xiàn),但都不是菱形。

菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書(shū)):

注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒(méi)條件都包含有平行四邊形的判定條件。

例4已知:的對(duì)角錢(qián)的垂直平分線(xiàn)與邊、分別交于、,如圖。

求證:四邊形是菱形(按教材講解)。

總結(jié)、擴(kuò)展

1、小結(jié):

(1)歸納判定菱形的四種常用方法。

(2)說(shuō)明矩形、菱形之間的區(qū)別與聯(lián)系。

2、思考題:已知:如圖4△中,,平分,,,交于。

求證:四邊形為菱形。

八、布置作業(yè)

教材P159中9、10、11、13

高中數(shù)學(xué)教學(xué)設(shè)計(jì)篇3

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

掌握三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。

教學(xué)重難點(diǎn)

。利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過(guò)程

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題

3、一根為L(zhǎng)cm的線(xiàn),一端固定,另一端懸掛一個(gè)小球,組成一個(gè)單擺,小球擺動(dòng)時(shí),離開(kāi)平衡位置的位移s(單位:cm)與時(shí)間t(單位:s)的函數(shù)關(guān)系是

(1)求小球擺動(dòng)的周期和頻率;(2)已知g=24500px/s2,要使小球擺動(dòng)的周期恰好是1秒,線(xiàn)的長(zhǎng)度l應(yīng)當(dāng)是多少?

(1) 選用一個(gè)函數(shù)來(lái)近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出整點(diǎn)時(shí)的水深的近似數(shù)值

(精確到0.001)。

(2) 一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與洋底的距離)  ,該船何時(shí)能進(jìn)入港口?在港口能呆多久?

(3) 若某船的吃水深度為4米,安全間隙為1.5米,該船在2:00開(kāi)始卸貨,吃水深度以每小時(shí)0.3

米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的 “思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。

練習(xí):教材P65面3題

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。

2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

高中數(shù)學(xué)教學(xué)設(shè)計(jì)篇4

教學(xué)目標(biāo):

1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

2.能識(shí)別和理解簡(jiǎn)單的框圖的功能.

3.能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡(jiǎn)單的問(wèn)題.

教學(xué)方法:

1.通過(guò)模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問(wèn)題的過(guò)程,加深對(duì)流程圖的感知.

2.在具體問(wèn)題的解決過(guò)程中,掌握基本的流程圖的畫(huà)法和流程圖的三種基本邏輯結(jié)構(gòu).

教學(xué)過(guò)程:

一、問(wèn)題情境

1.情境:

某鐵路客運(yùn)部門(mén)規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

其中(單位:)為行李的重量.

試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫(huà)出流程圖.

二、學(xué)生活動(dòng)

學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).

解算法為:

輸入行李的重量;

如果,那么,

否則;

輸出行李的重量和運(yùn)費(fèi).

上述算法可以用流程圖表示為:

教師邊講解邊畫(huà)出第10頁(yè)圖1-2-6.

在上述計(jì)費(fèi)過(guò)程中,第二步進(jìn)行了判斷.

三、建構(gòu)數(shù)學(xué)

1.選擇結(jié)構(gòu)的概念:

先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種

操作的結(jié)構(gòu)稱(chēng)為選擇結(jié)構(gòu).

虛線(xiàn)框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱(chēng)條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.

2.說(shuō)明:(1)有些問(wèn)題需要按給定的條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類(lèi)問(wèn)題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

(2)選擇結(jié)構(gòu)也稱(chēng)為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫(huà)成菱形,它有一個(gè)進(jìn)入點(diǎn)和兩個(gè)退出點(diǎn).

3.思考:教材第7頁(yè)圖所示的算法中,哪一步進(jìn)行了判斷?

高中數(shù)學(xué)教學(xué)設(shè)計(jì)篇5

1.教學(xué)目標(biāo)

(1)知識(shí)目標(biāo):

1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;

2.會(huì)由圓的方程寫(xiě)出圓的半徑和圓心,能根據(jù)條件寫(xiě)出圓的方程.

(2)能力目標(biāo):

1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問(wèn)題的能力;

2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;

3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

(3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

2.教學(xué)重點(diǎn).難點(diǎn)

(1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

(2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.

3.教學(xué)過(guò)程

(一)創(chuàng)設(shè)情境(啟迪思維)

問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側(cè)行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛?cè)脒@個(gè)隧道?

[引導(dǎo)]畫(huà)圖建系

[學(xué)生活動(dòng)]:嘗試寫(xiě)出曲線(xiàn)的方程(對(duì)求曲線(xiàn)的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線(xiàn)為x軸,建立直角坐標(biāo)系,則半圓的方程為x2y2=16(y≥0)

將x=2.7代入,得.

即在離隧道中心線(xiàn)2.7m處,隧道的高度低于貨車(chē)的高度,因此貨車(chē)不能駛?cè)脒@個(gè)隧道。

(二)深入探究(獲得新知)

問(wèn)題二:1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

答:x2y2=r2

2.如果圓心在,半徑為時(shí)又如何呢?

[學(xué)生活動(dòng)]探究圓的.方程。

[教師預(yù)設(shè)]方法一:坐標(biāo)法

如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為①

把①式兩邊平方,得(x―a)2(y―b)2=r2

方法二:圖形變換法

方法三:向量平移法

(三)應(yīng)用舉例(鞏固提高)

i.直接應(yīng)用(內(nèi)化新知)

問(wèn)題三:1.寫(xiě)出下列各圓的方程(課本p77練習(xí)1)

(1)圓心在原點(diǎn),半徑為3;

(2)圓心在,半徑為;

(3)經(jīng)過(guò)點(diǎn),圓心在點(diǎn).

2.根據(jù)圓的方程寫(xiě)出圓心和半徑

(1);(2).

ii.靈活應(yīng)用(提升能力)

問(wèn)題四:1.求以為圓心,并且和直線(xiàn)相切的圓的方程.

[教師引導(dǎo)]由問(wèn)題三知:圓心與半徑可以確定圓.

2.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程.

[學(xué)生活動(dòng)]探究方法

[教師預(yù)設(shè)]

方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

方法三:軌跡法(利用勾股定理列關(guān)系式)[多媒體課件演示]

方法四:軌跡法(利用向量垂直列關(guān)系式)

3.你能歸納出具有一般性的結(jié)論嗎?

已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:.

iii.實(shí)際應(yīng)用(回歸自然)

問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0.01m).

[多媒體課件演示創(chuàng)設(shè)實(shí)際問(wèn)題情境]

(四)反饋訓(xùn)練(形成方法)

問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

3.求圓x2y2=13過(guò)點(diǎn)(-2,3)的切線(xiàn)方程.

4.已知圓的方程為,求過(guò)點(diǎn)的切線(xiàn)方程.

高中數(shù)學(xué)教學(xué)設(shè)計(jì)篇6

教學(xué)目標(biāo)

1、知識(shí)與技能:

函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依

賴(lài)關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),高中階段更注重函數(shù)模型化的思想與意識(shí).

2、過(guò)程與方法:

(1)通過(guò)實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴(lài)關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;

(2)了解構(gòu)成函數(shù)的要素;

(3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;

(4)能夠正確使用“區(qū)間”的符號(hào)表示函數(shù)的定義域;

3、情感態(tài)度與價(jià)值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.

教學(xué)重點(diǎn)/難點(diǎn)

重點(diǎn):理解函數(shù)的模型化思想,用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);

難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

教學(xué)用具

多媒體

4.標(biāo)簽

函數(shù)及其表示

教學(xué)過(guò)程

(一)創(chuàng)設(shè)情景,揭示課題

1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

2、閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

(1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;

(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;

(3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題.

3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);

4、引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴(lài)關(guān)系;

5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.

(二)研探新知

1、函數(shù)的有關(guān)概念

(1)函數(shù)的概念:

設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).

記作:y=f(x),x∈A.

其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

注意:

①“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

②函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

(2)構(gòu)成函數(shù)的三要素是什么?

定義域、對(duì)應(yīng)關(guān)系和值域

(3)區(qū)間的概念

①區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;

②無(wú)窮區(qū)間;

③區(qū)間的數(shù)軸表示.

(4)初中學(xué)過(guò)哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?

通過(guò)三個(gè)已知的函數(shù):y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比較描述性定義和集合,與對(duì)應(yīng)語(yǔ)言刻畫(huà)的定義,談?wù)勼w會(huì).

師:歸納總結(jié)

(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。

1、如何求函數(shù)的定義域

例1:已知函數(shù)f(x)=+

(1)求函數(shù)的定義域;

(2)求f(-3),f()的值;

(3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.

分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫(xiě)成集合或區(qū)間的形式.

例2、設(shè)一個(gè)矩形周長(zhǎng)為80,其中一邊長(zhǎng)為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫(xiě)出定義域.

分析:由題意知,另一邊長(zhǎng)為x,且邊長(zhǎng)x為正數(shù),所以0<x<40.

所以s==(40-x)x(0<x<40)

引導(dǎo)學(xué)生小結(jié)幾類(lèi)函數(shù)的定義域:

(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R.

2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合.

(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.

(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)

(5)滿(mǎn)足實(shí)際問(wèn)題有意義.

鞏固練習(xí):課本P19第1

2、如何判斷兩個(gè)函數(shù)是否為同一函數(shù)

例3、下列函數(shù)中哪個(gè)與函數(shù)y=x相等?

分析:

1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱(chēng)這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。

解:

課本P18例2

(四)歸納小結(jié)

①?gòu)木唧w實(shí)例引入了函數(shù)的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時(shí)引出了區(qū)間的概念.

(五)設(shè)置問(wèn)題,留下懸念

1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題

2、舉出生活中函數(shù)的例子(三個(gè)以上),并用集合與對(duì)應(yīng)的語(yǔ)言來(lái)描述函數(shù),同時(shí)說(shuō)出函數(shù)的定義域、值域和對(duì)應(yīng)關(guān)系.

課堂小結(jié)

高中數(shù)學(xué)教學(xué)設(shè)計(jì)篇7

一、教材分析

1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見(jiàn)到的、很普通的一個(gè)空間圖形。“二面角”是人教版《數(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過(guò)兩條異面直線(xiàn)所成的角、直線(xiàn)和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究?jī)蓚€(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過(guò)本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線(xiàn)和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

2、教學(xué)目標(biāo):

知識(shí)目標(biāo):

(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問(wèn)題。

(2)進(jìn)一步培養(yǎng)學(xué)生把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的化歸思想。

能力目標(biāo):

(1)突出對(duì)類(lèi)比、直覺(jué)、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。

(2)通過(guò)對(duì)圖形的觀察、分析、比較和操作來(lái)強(qiáng)化學(xué)生的動(dòng)手操作能力。

德育目標(biāo):

(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)

(2)通過(guò)揭示線(xiàn)線(xiàn)、線(xiàn)面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

情感目標(biāo):在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。

3、重點(diǎn)、難點(diǎn):

重點(diǎn):“二面角”和“二面角的平面角”的概念

難點(diǎn):“二面角的平面角”概念的形成過(guò)程

二、教法分析

1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問(wèn)題啟導(dǎo)、活動(dòng)探究和類(lèi)比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來(lái)輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

三、學(xué)法指導(dǎo)

1、樂(lè)學(xué):在整個(gè)學(xué)習(xí)過(guò)程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類(lèi)比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

3、會(huì)學(xué):通過(guò)自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類(lèi)比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問(wèn)題,更能發(fā)現(xiàn)問(wèn)題。

四、教學(xué)過(guò)程

心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。

(一)、二面角

1、揭示概念產(chǎn)生背景。

問(wèn)題情境1、在平面幾何中“角”是怎樣定義的?

問(wèn)題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

問(wèn)題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書(shū)課題)。

通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過(guò)程。

問(wèn)題情境4、那么,應(yīng)該如何定義二面角呢?

創(chuàng)設(shè)這個(gè)問(wèn)題情境,為學(xué)生創(chuàng)新思維的展開(kāi)提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過(guò)程。教師應(yīng)注意多讓學(xué)生說(shuō),對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。

問(wèn)題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過(guò)實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

(二)、二面角的平面角

1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說(shuō)明二面角不僅有大小,而且其大小是唯一確定的。平面

與平面的位置關(guān)系,總的說(shuō)來(lái)只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來(lái)研究二面角的度量問(wèn)題。

問(wèn)題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來(lái)處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

2、展現(xiàn)概念形成過(guò)程

(1)、類(lèi)比。教師啟發(fā),尋找類(lèi)比聯(lián)想的對(duì)象。

問(wèn)題情境7、我們以前碰到過(guò)類(lèi)似的問(wèn)題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過(guò)的兩種空間角的定義,電腦演示以提高效率。

問(wèn)題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。

問(wèn)題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

(2)、提出猜想:二面角的大小也可通過(guò)平面的角來(lái)定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

問(wèn)題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺(jué)思維的結(jié)果。

(3)、探索實(shí)驗(yàn)。通過(guò)實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

(4)、繼續(xù)探索,得到定義。

問(wèn)題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過(guò)直線(xiàn)上一點(diǎn)的垂線(xiàn)的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

(5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說(shuō)明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

(三)、二面角及其平面角的畫(huà)法

主要分為直立式和平臥式兩種,用電腦《幾何畫(huà)板》作圖。

(四)、范例分析

為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來(lái)源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來(lái)自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

例:一張邊長(zhǎng)為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。

分析:涉及二面角的計(jì)算問(wèn)題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

題后反思:

(1)解題過(guò)程中必須證明∠BDc是二面角B—AD—c的平面角。

(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

(五)、練習(xí)、小結(jié)與作業(yè)

練習(xí):習(xí)題9.7的第3題

小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類(lèi)比和深入研究這兩種知識(shí)創(chuàng)新的方法。

作業(yè):習(xí)題9.7的第4題

思考題:見(jiàn)例題

五、板書(shū)設(shè)計(jì)(見(jiàn)課件)

以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

1637166