高中數(shù)學立體幾何知識點大全
立體幾何一般作為平面幾何的后續(xù)課程,暫時在人教版數(shù)學必修二中出現(xiàn)。高中數(shù)學立體幾何知識點大全有哪些你知道嗎?一起來看看高中數(shù)學立體幾何知識點大全,歡迎查閱!
目錄
高中數(shù)學立體幾何(平面)知識點
一、平面
通常用一個平行四邊形來表示.
平面常用希臘字母α、β、γ…或拉丁字母M、N、P來表示,也可用表示平行四邊形的兩個相對頂點字母表示,如平面AC.
在立體幾何中,大寫字母A,B,C,…表示點,小寫字母,a,b,c,…l,m,n,…表示直線,且把直線和平面看成點的集合,因而能借用集合論中的符號表示它們之間的關(guān)系,例如:
a) A∈l—點A在直線l上;Aα—點A不在平面α內(nèi);
b) lα—直線l在平面α內(nèi);
c) aα—直線a不在平面α內(nèi);
d) l∩m=A—直線l與直線m相交于A點;
e) α∩l=A—平面α與直線l交于A點;
f) α∩β=l—平面α與平面β相交于直線l.
二、平面的基本性質(zhì)
公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi).
公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線.
公理3經(jīng)過不在同一直線上的三個點,有且只有一個平面.
根據(jù)上面的公理,可得以下推論.
推論1經(jīng)過一條直線和這條直線外一點,有且只有一個平面.
推論2經(jīng)過兩條相交直線,有且只有一個平面.
推論3經(jīng)過兩條平行直線,有且只有一個平面.
公理4平行于同一條直線的兩條直線互相平行
高中數(shù)學立體幾何知識點
數(shù)學知識點1、柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到
截面距離與高的比的平方。
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖
是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
數(shù)學知識點2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
數(shù)學知識點3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
高中數(shù)學的學習方法
用好筆記本
從高一開始,我就有筆記本,老師上課的板書從來沒有漏過一個知識點,沒有漏掉過一個例題,都記在筆記本上。而且一定要上課的時候就聽懂老師的思路,即使有不懂的,下課一定要去找老師提問。我借了筆記,看不懂就去問他。
筆記本上,基礎(chǔ)概念,公式,例題,老師讓我們課上做的題,都要記下來。其實目的很簡單,以后好復習,而且寫一遍有助于記憶。
下課之后,在每天做作業(yè)之前,我都會把筆記本拿出來先看一遍,今天主要什么知識,什么例題,主要的思路方法是什么,然后再去做作業(yè)。
其實作業(yè)里的很多題都不超出老師上課所涉及到的題型知識。有些確實難的,一定要自己先思考怎么做,實在做不出來就標注一下,拿答案來看。搞清楚自己到底卡在哪個地方了,然后把這個題當作一個典型記下來,當作一個方法的示例。
跟著老師走
另外就是自己做的練習了。我當時每一門課都有一本輔導書,或者是中學教材全解或者是王后雄或者是其他的,都是我自己親自到書店去挑的,自己覺得好才去買。我是以自己學習情況來做題的,會的題做一兩個就行了。如果是不會的,就一定會好好做,仔細研究題目整個的思路。后來發(fā)現(xiàn)考試里其實也就是很多見過的題型,方法都有共通之處。
高考復習,我就是很乖地跟著老師走。然后做老師的練習。然后自己做高考題,做別的模擬題。查缺補漏,多總結(jié)做題的方法。有些題型一開始我也不知道該怎么想,后來做多了,再加上老師一輪復習過方法,看看例題,自己慢慢就開竅了,看到之后也不會害怕了。
一定要有自信,不可以有抵觸心理,不可以厭惡一門科目,否則你絕對學不好。我并不喜歡數(shù)學,但是我為了高考是一定會把它好好學好的。得數(shù)學者得天下,這句話沒錯!
別太在乎分數(shù)
關(guān)于所有的考試和練習:
請大家珍惜每一次練習,考試。
這種時候都是對自己這一階段學習的一次檢查。是非常必要的,查缺補漏都靠這個了。
不要太過于在乎分數(shù)
每次做完一定要找出自己的問題,是基礎(chǔ)不牢,還是粗心大意,還是方法沒有掌握等等。在困惑的時候一定要和老師好好交流。
一定記住,不要把問題歸結(jié)于什么心態(tài)不好,不在狀態(tài)這種虛無縹緲的原因上,一定要找到最基礎(chǔ)最根本的原因!否則你就永遠暈頭轉(zhuǎn)向,不知道該朝哪個方向努力!
關(guān)于考試作弊,提前查答案等等不誠實的行為。我只能說,出來混的,遲早要還的,不信的話,高考見吧。浪費掉的是你每次練習檢驗自己的機會,浪費掉的是自己這么多年來的學習,你自己的心里也會不安的!
在一輪復習中,老師會按照知識點復習。復習中,老師在課堂上會講一些經(jīng)典的例題和一些必會的基礎(chǔ)題型。這些題型請大家務必做好做透,將它的方法吃透。上完課后做作業(yè)前,請大家把這些題再仔細看一遍,之后再開始做作業(yè),事半功倍。
請大家在每個知識點結(jié)束時爭取將這個知識點的問題解決。不說難題都沒有問題,至少基本的概念,方法要會。
在做難題的時候,要注意方法。其實數(shù)學也是有方法可找的。就比如說解析幾何,橢圓這類型的題,是聯(lián)立還是點差法,在每次做完題后,根據(jù)題目設問的類型要進行反思和整理。
考試的時候,大家務必拿到的分,就是選擇除最后一道,填空除最后一道,大題的前幾道,這些題拿到了,上100肯定沒問題。那些難題,再提升提升,120以上應該是可以的。
提高數(shù)學成績的訣竅有哪些
第一,查查我們在知識方面還能做那些努力
關(guān)鍵的是做好知識的準備,考前要檢查自己在初中學習的數(shù)學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的準備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在中考答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。
第二,一定要對自己、對未來充滿信心,心態(tài)問題是影響考試的最重要的原因。
走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經(jīng)讀了一千天的初中,進行了三百多天的復習,做了三千至四千道題,養(yǎng)兵千日,用兵一時,現(xiàn)在是收獲的時候,自己會取得好成績的。
反過來,如果進考場就底氣不足,必定會影響自己的發(fā)揮。就是平常日學習不好,也不要緊,初中升高中知識人生的一段旅程,不是人生的終點。只要你努力了,人生處處是起點..只要你消極,人生處處是終點。
第三,審題很關(guān)鍵
成也審題敗也審題.如何審題呢?
(1)這個題目有哪些個已知條件?我能不能把已知條件分開?
(2)求解的目標是什么?對求解有什么要求?
(3)能不能畫一個圖幫助思考?好多問題是沒有看清楚題意致錯。審題不清,你做得越多,可能錯的就越多。
(4)所給出的已知條件相互之間有什么關(guān)系?能不能從中發(fā)現(xiàn)隱含條件?
(5)已知條件與求解目標有什么聯(lián)系?
能不能從中獲得解題的思路?找到進門的門檻?
(6)能不能先從已知條件導出某些有用的東西?
(7)觀察整個題目,聯(lián)想我自己過去做過的題,
我是否做過與此有關(guān)的問題?是否做過表面上不同,實際上類似的問題?這個題目是由見過他們是如何求解的?
第四,別拿村長不當干部
要更加重視自己會做的題目:中考考試重要的是“不怕不會,就怕不對”。
實際上,對于80%的學生來說,中考的較量是大家都會做的題目的較量。因為,難題你不會,別人也可能不會。這樣難題大家都拿不到分數(shù),但是你會做的題目,還有許多人會做。
中考針對普遍學生,你做錯了,而別人做對了,這個差距就拉大了。
有些同學往往對自己會的題目疏忽大意,急匆匆的把會做的題目的題目做錯了。然后去做哪些難題,最后難題也得不了分數(shù),傻不傻!傻不傻!聰明人做傻事就是這樣做的。
高中數(shù)學立體幾何知識點大全相關(guān)文章: