人工智能邏輯推理論文
人工智能邏輯推理論文
計算機科學(xué)和人工智能將是21世紀(jì)邏輯學(xué) 發(fā)展 的主要動力源泉,并且在很大程度上將決定21世紀(jì)邏輯學(xué)的面貌。以下是學(xué)習(xí)啦小編整理分享的人工智能邏輯推理論文的相關(guān)文章,歡迎閱讀!
人工智能邏輯推理論文篇一
從人工智能看當(dāng)代邏輯學(xué)的發(fā)展
[摘要] 本文認(rèn)為, 計算 機 科學(xué) 和人工智能將是21世紀(jì)邏輯學(xué) 發(fā)展 的主要動力源泉,并且在很大程度上將決定21世紀(jì)邏輯學(xué)的面貌。至少在21世紀(jì)早期,邏輯學(xué)將重點關(guān)注下列論題:(1)如何在邏輯中處理常識推理的弗協(xié)調(diào)、非單調(diào)和容錯性因素?(2)如何使機器人具有人的創(chuàng)造性智能,如從 經(jīng)驗證據(jù)中建立用于指導(dǎo)以后行動的可錯的歸納判斷?(3)如何進行知識表示和知識推理,特別是基于已有的知識庫以及各認(rèn)知主體相互之間的知識而進行的推理?(4)如何結(jié)合各種語境因素進行 自然 語言理解和推理,使智能機器人能夠用人的自然語言與人進行成功的交際?等等。
[關(guān)鍵詞] 人工智能,常識推理,歸納邏輯,廣義內(nèi)涵邏輯,認(rèn)知邏輯,自然語言邏輯
現(xiàn)代 邏輯創(chuàng)始于19世紀(jì)末葉和20世紀(jì)早期,其發(fā)展動力主要來自于數(shù)學(xué)中的公理化運動。當(dāng)時的數(shù)學(xué)家們試圖即從少數(shù)公理根據(jù)明確給出的演繹規(guī)則推導(dǎo)出其他的數(shù)學(xué)定理,從而把整個數(shù)學(xué)構(gòu)造成為一個嚴(yán)格的演繹大廈,然后用某種程序和 方法 一勞永逸地證明數(shù)學(xué)體系的可靠性。為此需要發(fā)明和鍛造嚴(yán)格、精確、適用的邏輯工具。這是現(xiàn)代邏輯誕生的主要動力。由此造成的后果就是20世紀(jì)邏輯 研究 的嚴(yán)重數(shù)學(xué)化,其表現(xiàn)在于:一是邏輯專注于在數(shù)學(xué)的形式化過程中提出的 問題 ;二是邏輯采納了數(shù)學(xué)的方法論,從事邏輯研究就意味著象數(shù)學(xué)那樣用嚴(yán)格的形式證明去解決問題。由此發(fā)展出來的邏輯被恰當(dāng)?shù)胤Q為“數(shù)理邏輯”,它增強了邏輯研究的深度,使邏輯學(xué)的發(fā)展繼古希臘邏輯、歐洲中世紀(jì)邏輯之后進入第三個高峰期,并且對整個現(xiàn)代科學(xué)特別是數(shù)學(xué)、 哲學(xué) 、語言學(xué)和 計算機科學(xué)產(chǎn)生了非常重要的 影響 。
本文所要探討的問題是:21世紀(jì)邏輯發(fā)展的主要動力將來自何處?大致說來將如何發(fā)展?我個人的看法是:計算機科學(xué)和人工智能將至少是21世紀(jì)早期邏輯學(xué)發(fā)展的主要動力源泉,并將由此決定21世紀(jì)邏輯學(xué)的另一幅面貌。由于人工智能要模擬人的智能,它的難點不在于人腦所進行的各種必然性推理(這一點在20世紀(jì)基本上已經(jīng)做到了,如用計算機去進行高難度和高強度的數(shù)學(xué)證明,“深藍(lán)”通過高速、大量的計算去與世界冠軍下棋),而是最能體現(xiàn)人的智能特征的能動性、創(chuàng)造性思維,這種思維活動中包括 學(xué)習(xí) 、抉擇、嘗試、修正、推理諸因素,例如選擇性地搜集相關(guān)的經(jīng)驗證據(jù),在不充分信息的基礎(chǔ)上作出嘗試性的判斷或抉擇,不斷根據(jù) 環(huán)境反饋調(diào)整、修正自己的行為,……由此達到 實踐的成功。于是,邏輯學(xué)將不得不比較全面地研究人的思維活動,并著重研究人的思維中最能體現(xiàn)其能動性特征的各種不確定性推理,由此發(fā)展出的邏輯 理論 也將具有更強的可 應(yīng)用 性。
實際上,在20世紀(jì)中后期,就已經(jīng)開始了現(xiàn)代邏輯與人工智能(記為AI)之間的相互融合和滲透。例如,哲學(xué)邏輯所研究的許多課題在理論計算機和人工智能中具有重要的應(yīng)用價值。AI從認(rèn)知心 理學(xué) 、 社會 科學(xué)以及決策科學(xué)中獲得了許多資源,但邏輯(包括哲學(xué)邏輯)在AI中發(fā)揮了特別突出的作用。某些原因促使哲學(xué)邏輯家去發(fā)展關(guān)于非數(shù)學(xué)推理
的理論;基于幾乎同樣的理由,AI研究者也在進行類似的探索,這兩方面的研究正在相互接近、相互借鑒,甚至在逐漸融合在一起。例如,AI特別關(guān)心下述課題:
·效率和資源有限的推理;
·感知;
·做 計劃和計劃再認(rèn);
·關(guān)于他人的知識和信念的推理;
·各認(rèn)知主體之間相互的知識;
·自然語言理解;
·知識表示;
·常識的精確處理;
·對不確定性的處理,容錯推理;
·關(guān)于時間和因果性的推理;
·解釋或說明;
·對歸納概括以及概念的學(xué)習(xí)。[①]
21世紀(jì)的邏輯學(xué)也應(yīng)該關(guān)注這些問題,并對之進行研究。為了做到這一點,邏輯學(xué)家們有必要熟悉AI的要求及其相關(guān)進展,使其研究成果在AI中具有可應(yīng)用性。
我認(rèn)為,至少是21世紀(jì)早期,邏輯學(xué)將會重點關(guān)注下述幾個領(lǐng)域,并且有可能在這些領(lǐng)域出現(xiàn)具有重大意義的成果:(1)如何在邏輯中處理常識推理中的弗協(xié)調(diào)、非單調(diào)和容錯性因素?(2)如何使機器人具有人的創(chuàng)造性智能,如從經(jīng)驗證據(jù)中建立用于指導(dǎo)以后行動的歸納判斷?(3)如何進行知識表示和知識推理,特別是基于已有的知識庫以及各認(rèn)知主體相互之間的知識而進行的推理?(4)如何結(jié)合各種語境因素進行自然語言理解和推理,使智能機器人能夠用人的自然語言與人進行成功的交際?等等。
1.常識推理中的某些弗協(xié)調(diào)、非單調(diào)和容錯性因素
AI研究的一個目標(biāo)就是用機器智能模擬人的智能,它選擇各種能反映人的智能特征的問題進行實踐,希望能做出各種具有智能特征的 軟件系統(tǒng)。AI研究基于計算途徑,因此要建立具有可操作性的符號模型。一般而言,AI關(guān)于智能系統(tǒng)的符號模型可描述為:由一個知識載體(稱為知識庫KB)和一組加載在KB上的足以產(chǎn)生智能行為的過程(稱為問題求解器PS)構(gòu)成。經(jīng)過20世紀(jì)70年代包括專家系統(tǒng)的發(fā)展,AI研究者逐步取得共識,認(rèn)識到知識在智能系統(tǒng)中力量,即一般的智能系統(tǒng)事實上是一種基于知識的系統(tǒng),而知識包括專門性知識和常識性知識,前者亦可看做是某一領(lǐng)域內(nèi)專家的常識。于是,常識問題就成為AI研究的一個核心問題,它包括兩個方面:常識表示和常識推理,即如何在人工智能中清晰地表示人類的常識,并運用這些常識去進行符合人類行為的推理。顯然,如此建立的常識知識庫可能包含矛盾,是不協(xié)調(diào)的,但這種矛盾或不協(xié)調(diào)應(yīng)不至于影響到進行合理的推理行為;常識推理還是一種非單調(diào)推理,即人們基于不完全的信息推出某些結(jié)論,當(dāng)人們得到更完全的信息后,可以改變甚至收回原來的結(jié)論;常識推理也是一種可能出錯的不精確的推理模式,是在容許有錯誤知識的情況下進行的推理,簡稱容錯推理。而經(jīng)典邏輯拒斥任何矛盾,容許從矛盾推出一切命題;并且它是單調(diào)的,即承認(rèn)如下的推理模式:如果p?r,則pùq?r;或者說,任一理論的定理屬于該理論之任一擴張的定理集。因此,在處理常識表示和常識推理時,經(jīng)典邏輯應(yīng)該受到限制和修正,并發(fā)展出某些非經(jīng)典的邏輯,如次協(xié)調(diào)邏輯、非單調(diào)邏輯、容錯推理等。有人指出,常識推理的邏輯是次協(xié)調(diào)邏輯和非單調(diào)邏輯的某種結(jié)合物,而后者又可看做是對容錯推理的簡單且基本的情形的一種形式化。[②]
“次協(xié)調(diào)邏輯”(Paraconsistent Logic)是由普里斯特、達·科斯塔等人在對悖論的 研究 中 發(fā)展 出來的,其基本想法是:當(dāng)在一個 理論 中發(fā)現(xiàn)難以克服的矛盾或悖論時,與其徒勞地想盡各種辦法去排除或防范它們,不如干脆讓它們留在理論體系內(nèi),但把它們“圈禁”起來,不讓它們?nèi)我鈹U散,以免使我們所創(chuàng)立或研究的理論成為“不足道”的。于是,在次協(xié)調(diào)邏輯中,能夠容納有意義、有價值的“真矛盾”,但這些矛盾并不能使系統(tǒng)推出一切,導(dǎo)致自毀。因此,這一新邏輯具有一種次于經(jīng)典邏輯但又遠(yuǎn)遠(yuǎn)高于完全不協(xié)調(diào)系統(tǒng)的協(xié)調(diào)性。次協(xié)調(diào)邏輯家們認(rèn)為,如果在一理論T中,一語句A及其否定?A都是定理,則T是不協(xié)調(diào)的;否則,稱T是協(xié)調(diào)的。如果T所使用的邏輯含有從互相否定的兩公式可推出一切公式的規(guī)則或推理,則不協(xié)調(diào)的T也是不足道的(trivial)。因此,通常以經(jīng)典邏輯為基礎(chǔ)的理論,如果它是不協(xié)調(diào)的,那它一定也是不足道的。這一現(xiàn)象表明,經(jīng)典邏輯雖可用于研究協(xié)調(diào)的理論,但不適用于研究不協(xié)調(diào)但又足道的理論。達·科斯塔在20世紀(jì)60年代構(gòu)造了一系列次協(xié)調(diào)邏輯系統(tǒng)Cn(1≤n≤w),以用作不協(xié)調(diào)而又足道的理論的邏輯工具。對次協(xié)調(diào)邏輯系統(tǒng)Cn的特征性描述包括下述命題:(i)矛盾律?(Aù?A)不普遍有效;(ii)從兩個相互否定的公式A和?A推不出任意公式;即是說,矛盾不會在系統(tǒng)中任意擴散,矛盾不等于災(zāi)難。(iii)應(yīng)當(dāng)容納與(i)和(ii)相容的大多數(shù)經(jīng)典邏輯的推理模式和規(guī)則。這里,(i)和(ii)表明了對矛盾的一種相對寬容的態(tài)度,(iii)則表明次協(xié)調(diào)邏輯對于經(jīng)典邏輯仍有一定的繼承性。
在任一次協(xié)調(diào)邏輯系統(tǒng)Cn(1≤n≤w)中,下述經(jīng)典邏輯的定理或推理模式都不成立:
?(Aù?A)
Aù?A→B
A→(?A→B)
(A??A)→B
(A??A)→?B
A→??A
(?Aù(AúB))→B
(A→B)→(?B→?A)
若以C0為經(jīng)典邏輯,則系列C0, C1, C2,… Cn,… Cw使得對任正整數(shù)i有Ci弱于Ci-1,Cw是這系列中最弱的演算。已經(jīng)為Cn設(shè)計出了合適的語義學(xué),并已經(jīng)證明Cn相對于此種語義是可靠的和完全的,并且次協(xié)調(diào)命題邏輯系統(tǒng)Cn還是可判定的?,F(xiàn)在,已經(jīng)有人把次協(xié)調(diào)邏輯擴展到模態(tài)邏輯、時態(tài)邏輯、道義邏輯、多值邏輯、集合論等領(lǐng)域的研究中,發(fā)展了這些領(lǐng)域內(nèi)的次協(xié)調(diào)理論。顯然,次協(xié)調(diào)邏輯將會得到更進一步的發(fā)展。[③]
非單調(diào)邏輯是關(guān)于非單調(diào)推理的邏輯,它的研究開始于20世紀(jì)80年代。1980年,D·麥克多莫特和J·多伊爾初步嘗試著系統(tǒng)發(fā)展一種關(guān)于非單調(diào)推理的邏輯。他們在經(jīng)典謂詞演算中引入一個算子M,表示某種“一致性”斷言,并將其看做是模態(tài)概念,通過一定程序把模態(tài)邏輯系統(tǒng)T、S4和S5翻譯成非單調(diào)邏輯。B·摩爾的 論文《非單調(diào)邏輯的語義思考》(1983)據(jù)認(rèn)為在非單調(diào)邏輯方面作出了令人注目的貢獻。他在“缺省推理”和“自動認(rèn)知推理”之間做了區(qū)分,并把前者看作是在沒有任何相反信息和缺少證據(jù)的條件下進行推理的過程,這種推理的特征是試探性的:根據(jù)新信息,它們很可能會被撤消。自動認(rèn)知推理則不是這種類型,它是與人們自身的信念或知識相關(guān)的推理,可用它模擬一個理想的具有信念的有理性的代理人的推理。對于在 計算 機和人工智能中獲得成功的 應(yīng)用 而言,非單調(diào)邏輯尚需進一步發(fā)展。
2.歸納以及其他不確定性推理
人類智能的本質(zhì)特征和最高表現(xiàn)是創(chuàng)造。在人類創(chuàng)造的過程中,具有必然性的演繹推理固然起重要作用,但更為重要的是具有某種不確定性的歸納、類比推理以及模糊推理等。因此, 計算機要成功地模擬人的智能,真正體現(xiàn)出人的智能品質(zhì),就必須對各種具有不確定性的推理模式進行研究。
首先是對歸納推理和歸納邏輯的研究。這里所說的“歸納推理”是廣義的,指一切擴展性推理,它們的結(jié)論所斷定的超出了其前提所斷定的范圍,因而前提的真無法保證結(jié)論的真,整個推理因此缺乏必然性。具體說來,這種意義的“歸納”包括下述 內(nèi)容 :簡單枚舉法;排除歸納法,指這樣一些操作:預(yù)先通過觀察或?qū)嶒灹谐霰谎芯楷F(xiàn)象的可能的原因,然后有選擇地安排某些事例或?qū)嶒灒鶕?jù)某些標(biāo)準(zhǔn)排除不相干假設(shè),最后得到比較可靠的結(jié)論; 統(tǒng)計概括:從關(guān)于有窮數(shù)目樣本的構(gòu)成的知識到關(guān)于未知總體分布構(gòu)成的結(jié)論的推理;類比論證和假說演繹法,等等。盡管休謨提出著名的“歸納 問題 ”,對歸納推理的合理性和歸納邏輯的可能性提出了深刻的質(zhì)疑,但我認(rèn)為,(1)歸納是在茫茫宇宙中生存的人類必須采取也只能采取的認(rèn)知策略,對于人類來說具有 實踐的必然性。(2)人類有理由從 經(jīng)驗的重復(fù)中建立某種確實性和 規(guī)律 性,其依據(jù)就是確信宇宙中存在某種類似于 自然 齊一律和客觀因果律之類的東西。這一確信是合理的,而用純邏輯的理由去懷疑一個關(guān)于世界的事實性斷言則是不合理的,除非這個斷言是邏輯矛盾。(3)人類有可能建立起局部合理的歸納邏輯和歸納 方法 論。并且,歸納邏輯的這種可能性正在計算機 科學(xué) 和人工智能的研究推動下慢慢地演變成現(xiàn)實。恩格斯早就指出,“ 社會 一旦有技術(shù)上的需要,則這種需要比十所大學(xué)更能把科學(xué)推向前進。”[④] 有人通過指責(zé)現(xiàn)有的歸納邏輯不成熟,得出“歸納邏輯不可能”的結(jié)論,他們的推理本身與歸納推理一樣,不具有演繹的必然性。(4)人類實踐的成功在一定程度上證明了相應(yīng)的經(jīng)驗知識的真理性,也就在一定程度上證明了歸納邏輯和歸納方法論的力量。毋庸否認(rèn),歸納邏輯 目前 還很不成熟。有的學(xué)者指出,為了在機器的智能模擬中克服對歸納模擬的困難而有所突破,應(yīng)該將歸納邏輯等有關(guān)的基礎(chǔ)理論研究與機器 學(xué)習(xí) 、不確定推理和神經(jīng) 網(wǎng)絡(luò) 學(xué)習(xí)模型與歸納學(xué)習(xí)中已有的成果結(jié)合起來。只有這樣,才能在已有的歸納學(xué)習(xí)成果上,在機器歸納和機器發(fā)現(xiàn)上取得新的突破和進展。[⑤] 這是一個極有價值且極富挑戰(zhàn)性的課題,無疑在21世紀(jì)將得到重視并取得進展。
再談模糊邏輯。現(xiàn)實世界中充滿了模糊現(xiàn)象,這些現(xiàn)象反映到人的思維中形成了模糊概念和模糊命題,如“矮個子”、“美人”、“甲地在乙地附近”、“他很年輕”等。 研究 模糊概念、模糊命題和模糊推理的邏輯 理論 叫做“模糊邏輯”。對它的研究始于20世紀(jì)20年代,其代表性人物是L·A·查德和P·N·馬林諾斯。模糊邏輯為精確邏輯(二值邏輯)解決不了的 問題 提供了解決的可能,它 目前 在醫(yī)療診斷、故障檢測、氣象預(yù)報、自動控制以及人工智能研究中獲得重要 應(yīng)用 。顯然,它在21世紀(jì)將繼續(xù)得到更大的 發(fā)展 。
3.廣義內(nèi)涵邏輯
經(jīng)典邏輯只是對命題聯(lián)結(jié)詞、個體詞、謂詞、量詞和等詞進行了研究,但在 自然 語言中,除了這些語言成分之外,顯然還存在許多其他的語言成分,如各種各樣的副詞,包括模態(tài)詞“必然”、“可能”和“不可能”、時態(tài)詞“過去”、“現(xiàn)在”和“未來”、道義詞“應(yīng)該”、“允許”、“禁止”等等,以及各種認(rèn)知動詞,如“思考”、“希望”、“相信”、“判斷”、“猜測”、“考慮”、“懷疑”,這些認(rèn)知動詞在邏輯和 哲學(xué) 文獻 中被叫做“命題態(tài)度詞”。對這些副詞以及命題態(tài)度詞的邏輯研究可以歸類為“廣義內(nèi)涵邏輯”。
大多數(shù)副詞以及幾乎所有命題態(tài)度詞都是內(nèi)涵性的,造成內(nèi)涵語境,后者與外延語境構(gòu)成對照。外延語境又叫透明語境,是經(jīng)典邏輯的組合性原則、等值置換規(guī)則、同一性替換規(guī)則在其中適用的語境;內(nèi)涵語境又稱晦暗語境,是上述規(guī)則在其中不適用的語境。相應(yīng)于外延語境和內(nèi)涵語境的區(qū)別,一切語言表達式(包括自然語言的名詞、動詞、形容詞直至語句)都可以區(qū)分為外延性的和內(nèi)涵性的,前者是提供外延語境的表達式,后者是提供內(nèi)涵性語境的表達式。例如,殺死、見到、擁抱、吻、砍、踢、打、與…下棋等都是外延性表達式,而知道、相信、認(rèn)識、必然、可能、允許、禁止、過去、現(xiàn)在、未來等都是內(nèi)涵性表達式。
在內(nèi)涵語境中會出現(xiàn)一些復(fù)雜的情況。首先,對于個體詞項來說,關(guān)鍵性的東西是我們不僅必須考慮它們在現(xiàn)實世界中的外延,而且要考慮它們在其他可能世界中的外延。例如,由于“必然”是內(nèi)涵性表達式,它提供內(nèi)涵語境,因而下述推理是非有效的:
晨星必然是晨星,
晨星就是暮星,
所以,晨星必然是暮星。
這是因為:這個推理只考慮到“晨星”和“暮星”在現(xiàn)實世界中的外延,并沒有考慮到它們在每一個可能世界中的外延,我們完全可以設(shè)想一個可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我們就不能利用同一性替換規(guī)則,由該推理的前提得出它的結(jié)論:“晨星必然是暮星”。其次,在內(nèi)涵語境中,語言表達式不再以通常是它們的外延的東西作為外延,而以通常是它們的內(nèi)涵的東西作為外延。以“達爾文相信人是從猿猴進化而來的”這個語句為例。這里,達爾文所相信的是“人是從猿猴進化而來的”所表達的思想,而不是它所指稱的真值,于是在這種情況下,“人是從猿猴進化而來的”所表達的思想(命題)就構(gòu)成它的外延。再次,在內(nèi)涵語境中,雖然適用于外延的函項性原則不再成立,但并不是非要拋棄不可,可以把它改述為新的形式:一復(fù)合表達式的外延是它出現(xiàn)于外延語境中的部分表達式的外延加上出現(xiàn)于內(nèi)涵語境中的部分表達式的內(nèi)涵的函項。這個新的組合性或函項性原則在內(nèi)涵邏輯中成立。
一般而言,一個好的內(nèi)涵邏輯至少應(yīng)滿足兩個條件:(i)它必須能夠處理外延邏輯所能處理的問題;(ii)它還必須能夠處理外延邏輯所不能處理的難題。這就是說,它既不能與外延邏輯相矛盾,又要克服外延邏輯的局限。這樣的內(nèi)涵邏輯目前正在發(fā)展中,并且已有初步輪廓。從術(shù)語上說,內(nèi)涵邏輯除需要真、假、語句真值的同一和不同、集合或類、謂詞的同范圍或不同范圍等外延邏輯的術(shù)語之外,還需要同義、內(nèi)涵的同一和差異、命題、屬性或概念這樣一些術(shù)語。廣而言之,可以把內(nèi)涵邏輯看作是關(guān)于象“必然”、“可能”、“知道”、“相信”,“允許”、“禁止”等提供內(nèi)涵語境的語句算子的一般邏輯。在這種廣義之下,模態(tài)邏輯、時態(tài)邏輯、道義邏輯、認(rèn)知邏輯、問題邏輯等都是內(nèi)涵邏輯。不過,還有一種狹義的內(nèi)涵邏輯,它可以粗略定義如下:一個內(nèi)涵邏輯是一個形式語言,其中包括(1)謂詞邏輯的算子、量詞和變元,這里的謂詞邏輯不必局限于一階謂詞邏輯,也可以是高階謂詞邏輯;(2)合式的λ—表達式,例如(λx)A,這里A是任一類型的表達式,x是任一類型的變元,(λx)A本身是一函項,它把變元x在其中取值的那種類型的對象映射到A所屬的那種類型上;(3)其他需要的模態(tài)的或內(nèi)涵的算子,例如€,ù、ú。而一個內(nèi)涵邏輯的解釋,則由下列要素組成:(1)一個可能世界的非空集W;(2)一個可能個體的非空集D;(3)一個賦值,它給系統(tǒng)內(nèi)的表達式指派它們在每w∈W中的外延。對于任一的解釋Q和任一的世界w∈W,判定內(nèi)涵邏輯系統(tǒng)中的任一表達式X相對于解釋Q在w∈W中的外延總是可能的。這樣的內(nèi)涵邏輯系統(tǒng)有丘奇的LSD系統(tǒng),R·蒙塔古的IL系統(tǒng),以及E·N·扎爾塔的FIL系統(tǒng)等。[⑥]
在各種內(nèi)涵邏輯中,認(rèn)識論邏輯(epistemic logic)具有重要意義。它有廣義和狹義之分。廣義的認(rèn)識論邏輯 研究 與感知(perception)、知道、相信、斷定、理解、懷疑、 問題 和回答等相關(guān)的邏輯問題,包括問題邏輯、知道邏輯、相信邏輯、斷定邏輯等;狹義的認(rèn)識論邏輯僅指知道和相信的邏輯,簡稱“認(rèn)知邏輯”。馮·賴特在1951年提出了對“認(rèn)知模態(tài)”的邏輯 分析 ,這對建立認(rèn)知邏輯具有極大的啟發(fā)作用。J·麥金西首先給出了一個關(guān)于“知道”的模態(tài)邏輯。A·帕普于1957年建立了一個基于6條規(guī)則的相信邏輯系統(tǒng)。J·亨迪卡于60年代出版的《知識和信念》一書是認(rèn)知邏輯史上的重要著作,其中提出了一些認(rèn)知邏輯的系統(tǒng),并為其建立了基于“模型集”的語義學(xué),后者是可能世界語義學(xué)的先導(dǎo)之一。當(dāng)今的認(rèn)知邏輯紛繁復(fù)雜,既不成熟也面臨許多難題。由于認(rèn)知邏輯涉及認(rèn)識論、心 理學(xué) 、 語言學(xué)、 計算 機 科學(xué) 和人工智能等諸多領(lǐng)域,并且認(rèn)知邏輯的 應(yīng)用 技術(shù),又稱關(guān)于知識的推理技術(shù),正在成為 計算機科學(xué)和人工智能的重要分支之一,因此認(rèn)知邏輯在20世紀(jì)中后期成為國際邏輯學(xué)界的一個熱門研究方向。這一狀況在21世紀(jì)將得到繼續(xù)并進一步強化,在這方面有可能出現(xiàn)突破性的重要結(jié)果。
4.對 自然 語言的邏輯研究
對自然語言的邏輯研究有來自幾個不同領(lǐng)域的推動力。首先是計算機和人工智能的研究,人機對話和通訊、計算機的自然語言理解、知識表示和知識推理等課題,都需要對自然語言進行精細(xì)的邏輯分析,并且這種分析不能僅停留在句法層面,而且要深入到語義層面。其次是 哲學(xué) 特別是語言哲學(xué),在20世紀(jì)哲學(xué)家們對語言表達式的意義問題傾注了異乎尋常的精力, 發(fā)展 了各種各樣的意義 理論 ,如觀念論、指稱論、使用論、言語行為理論、真值條件論等等,以致有人說,關(guān)注意義成了20世紀(jì)哲學(xué)家的 職業(yè)病。再次是語言學(xué)自身發(fā)展的需要,例如在研究自然語言的意義問題時,不能僅僅停留在脫離語境的抽象研究上面,而要結(jié)合使用語言的特定 環(huán)境去研究,這導(dǎo)致了語義學(xué)、語用學(xué)、新修辭學(xué)等等發(fā)展。各個方面發(fā)展的成果可以總稱為“自然語言邏輯”,它力圖綜合后期維特根斯坦提倡的使用論,J·L·奧斯汀、J·L·塞爾等人發(fā)展的言語行為理論,以及P·格賴斯所創(chuàng)立的會話含義學(xué)說等成果,透過自然語言的指謂性和交際性去研究自然語言中的推理。
自然語言具有表達和交際兩種職能,其中交際職能是自然語言最重要的職能,是它的生命力之所在。而言語交際總是在一定的語言環(huán)境(簡稱語境)中進行的,語境有廣義和狹義之分。狹義的語境僅指一個語詞、一個句子出現(xiàn)的上下文。廣義的語境除了上下文之外,還包括該語詞或語句出現(xiàn)的整個 社會 歷史 條件,如該語詞或語句出現(xiàn)的時間、地點、條件、 講話的人(作者)、聽話的人(讀者)以及交際雙方所共同具有的背景知識,這里的背景知識包括交際雙方共同的信念和 心理習(xí)慣,以及共同的知識和假定等等。這些語境因素對于自然語言的表達式(語詞、語句)的意義有著極其重要的 影響 ,這具體表現(xiàn)在:(i)語境具有消除自然語言語詞的多義性、歧義性和模糊性的能力,具有嚴(yán)格規(guī)定語言表達式意義的能力。(ii)自然語言的句子常常包含指示代詞、人稱代詞、時間副詞等,要弄清楚這些句子的意義和 內(nèi)容 ,就要弄清楚這句話是誰說的、對誰說的、什么時候說的、什么地點說的、針對什么說的,等等,這只有在一定的語境中才能進行。依賴語境的其他類型的語句還有:包含著象“有些”和“每一個”這類量化表達式的句子的意義取決于依語境而定的論域,包含著象“大的”、“冷的”這類形容詞的句子的意義取決于依語境而定的相比較的對象類;模態(tài)語句和條件語句的意義取決于因語境而變化的語義決定因素,如此等等。(iii)語言表達式的意義在語境中會出現(xiàn)一些重要的變化,以至偏離它通常所具有的意義(抽象意義),而產(chǎn)生一種新的意義即語用涵義。有人認(rèn)為,一個語言表達式在它的具體語境中的意義,才是它的完全的真正的意義,一旦脫離開語境,它就只具有抽象的意義。語言的抽象意義和它的具體意義的關(guān)系,正象解剖了的死人肢體與活人肢體的關(guān)系一樣。邏輯應(yīng)該去研究、理解、把握自然語言的具體意義,當(dāng)然不是去研究某一個(或一組)特定的語句在某個特定語境中唯一無二的意義,而是專門研究確定自然語言具體意義的普遍原則。[⑦]
美國 語言學(xué)家保羅·格賴斯把語言表達式在一定的交際語境中產(chǎn)生的一種不同于字面意義的特殊涵義,叫做“語用涵義”、“會話涵義”或“隱涵”(implicature),并于1975年提出了一組“交際合作原則”,包括一個總則和四組準(zhǔn)則。總則的 內(nèi)容 是:在你參與會話時,你要依據(jù)你所參與的談話交流的公認(rèn)目的或方向,使你的會話貢獻符合這種需要。仿照康德把范疇區(qū)分為量、質(zhì)、關(guān)系和方式四類,格賴斯提出了如下四組準(zhǔn)則:
(1)數(shù)量準(zhǔn)則:在交際過程中給出的信息量要適中。
a.給出所要求的信息量;
b.給出的信息量不要多于所要求的信息量。
(2)質(zhì)量準(zhǔn)則:力求講真話。
a.不說你認(rèn)為假的東西,。
b.不說你缺少適當(dāng)證據(jù)的東西。
(3)關(guān)聯(lián)準(zhǔn)則:說話要與已定的交際目的相關(guān)聯(lián)。
(4)方式準(zhǔn)則:說話要意思明確,表達清晰。
a.避免晦澀生僻的表達方式;
b.避免有歧義的表達方式;
c.說話要簡潔;
d.說話要有順序性。[⑧]
后來對這些原則提出了不少修正和補充,例如有人還提出了交際過程中所要遵守的“禮貌原則”。只要把交際雙方遵守交際合作原則之類的語用規(guī)則作為基本前提,這些原則就可以用來確定和把握 自然 語言的具體意義(語用涵義)。實際上,一個語句p的語用涵義,就是聽話人在具體語境中根據(jù)語用規(guī)則由p得到的那個或那些語句。更具體地說,從說話人S說的話語p推出語用涵義q的一般過程是:
(i)S說了p;
(ii)沒有理由認(rèn)為S不遵守準(zhǔn)則,或至少S會遵守總的合作原則;
(iii)S說了p而又要遵守準(zhǔn)則或總的合作原則,S必定想表達q;
(iv)S必然知道,談話雙方都清楚:如果S是合作的,必須假設(shè)q;
(v)S無法阻止聽話人H考慮q;
(vi)因此,S意圖讓H考慮q,并在說p時意味著q。
試舉二例:
(1)a站在熄火的汽車旁,b向a走來。a說:“我沒有汽油了。”b說:“前面拐角處有一個修車鋪。”這里a與b談話的目的是:a想得到汽油。根據(jù)關(guān)系準(zhǔn)則,b說這句話是與a想得到汽油相關(guān)的,由此可知:b說這句話時隱涵著:“前面的修車鋪還在營業(yè)并且賣汽油。”
(2)某教授寫信推薦他的學(xué)生任某項 哲學(xué) 方面的 工作,信中寫到:“親愛的先生:我的學(xué)生c的 英語 很好,并且準(zhǔn)時上我的課。”根據(jù)量的準(zhǔn)則,應(yīng)該提供所需要的信息量;作為教授,他對自己的學(xué)生的情況顯然十分熟悉,也可以提供所需要的信息量,但他有意違反量的準(zhǔn)則,在信中只用一句話來介紹學(xué)生的情況,任用人一旦接到這封信,自然明白:教授認(rèn)為c不宜從事這項哲學(xué)工作。
并且,語用涵義還具有如下5個特點:(i)可取消性:在給原話語附加上某些話語之后,它原有的語用涵義可被取消。在例(1)中,若b在說“前面拐角處有一個修車鋪”之后又補上一句:“不過它這時已經(jīng)關(guān)門了”,則原有的語用涵義“你可從那里得到汽油”就被取消了。(ii)不可分離性:如果某話語在特定的語境中產(chǎn)生了語用涵義,則無論采用什么樣的同義結(jié)構(gòu),該含義始終存在,因為它所依附的是話語的內(nèi)容,而不是話語的形式。(iii)可推導(dǎo)性,前面已說明這一點。(iv)非規(guī)約性:語用涵義不能單獨從話語本身推出來,除要考慮交際合作原則之類的語用規(guī)則之外,也需要假定通常的邏輯推理規(guī)則,并需要把上文語句、交際雙方所共有的背景知識作為附加前提考慮在內(nèi)。(v)不確定性:同一句話語在不同的語境中可以產(chǎn)生不同的語用涵義。顯然,確定某個話語的語用涵義是一個極其復(fù)雜的過程,需要綜合和 分析 、歸納和演繹的統(tǒng)一 應(yīng)用 ,因此具有一定的或然性。 研究 如何迅速有效地把握自然語言表達式在具體語境中的語用涵義,這正是自然語言邏輯所要完成的任務(wù)之一,它將在21世紀(jì)取得進展。
下一頁分享更優(yōu)秀的<<<人工智能邏輯推理論文