初三數(shù)學(xué)知識的思維導(dǎo)圖
初三進(jìn)入數(shù)學(xué)的關(guān)鍵時期,我們應(yīng)該運(yùn)用科學(xué)的方法進(jìn)行學(xué)習(xí),數(shù)學(xué)思維導(dǎo)圖就是很好的一種方法。今天學(xué)習(xí)啦小編為大家?guī)砹顺跞龜?shù)學(xué)知識的思維導(dǎo)圖,一起來看看吧!知識。。今天學(xué)習(xí)啦小編為大家?guī)砹顺跞龜?shù)學(xué)知識的思維導(dǎo)圖,一起來看看吧!
初三數(shù)學(xué)知識的思維導(dǎo)圖匯總
初三數(shù)學(xué)知識:因式分解法
(一)運(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
?、夙棓?shù):三項
②有兩項是兩個數(shù)的的平方和,這兩項的符號相同。
③有一項是這兩個數(shù)的積的兩倍。
(3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
初三數(shù)學(xué)知識:初三數(shù)學(xué)復(fù)習(xí)常見誤區(qū)
題海戰(zhàn)術(shù)
其實不然。每一份綜合試卷,出卷人總要避免考舊題、陳題,盡量從新的角度,新的層面上設(shè)計問題。但是考查的知識點和數(shù)學(xué)思想方法是恒久不變的。所以多做題,不會碰巧和考題零距離親密接觸,反而會把自己陷入無邊無際的題海之中。解決問題的辦法是從知識點和思想方法的角度分別對所解題目進(jìn)行歸類,總結(jié)解題經(jīng)驗的同時,確認(rèn)自己是否真正掌握并確認(rèn)復(fù)習(xí)的重點。
對策:
對策一:讓自己花點時間整理最近解題的題型和思路。
對策二:這道題和以前的某一題差不多嗎?
對策三:此題的知識點我是否熟悉了?
對策四:最近有哪幾題的圖形相近?能否歸類?
對策五:這一題的解題思想在以前題目中也用到了,讓我把它們找出來!
鉆研難題基礎(chǔ)題就簡單了
也不對,其實基礎(chǔ)的才是最重要的。有的同學(xué)喜歡挑戰(zhàn)有難度的數(shù)學(xué)題,能讓他從思維中得到快樂,但數(shù)學(xué)分?jǐn)?shù)卻一直不高。其實這在一定程度上反映出我們數(shù)學(xué)學(xué)習(xí)中的浮躁狀況,老師愛講難題、綜合題,學(xué)生想做綜合題、難題,在忽視基礎(chǔ)的同時,迷失了數(shù)學(xué)學(xué)習(xí)的方向。
對策
對策一:告訴自己數(shù)學(xué)思維不等于復(fù)雜思維,數(shù)學(xué)的美往往體現(xiàn)在一些小題目中。
對策二:“簡約而不簡單”在平常題中體會數(shù)學(xué)思維的樂趣。
對策三:“一滴朝露也能折射出太陽的光輝。”讓我從基礎(chǔ)題中找綜合題的影子。
對策四:這道題真的簡單嗎? 對策五:我是一名優(yōu)秀的學(xué)生,我能在平凡中體現(xiàn)出我的優(yōu)秀。
課上聽得懂,課后不會解題
這是很多人的誤區(qū)之一。學(xué)習(xí)過程中,常常出現(xiàn)這種現(xiàn)象,學(xué)生在課堂上聽懂了,但課后解題特別是遇到新題型時便無所適從。這就說明上課聽懂是一回事,而達(dá)到能應(yīng)用知識解決問題是另一回事。教師所舉例題是范例也是思維訓(xùn)練的手段,作為學(xué)生不應(yīng)該只學(xué)會題中的知識,更要學(xué)會領(lǐng)悟出解題思路與技巧,以及蘊(yùn)藏其中的數(shù)學(xué)思想方法。
對策
對策一:自己重做一遍例題。
對策二:問自己為什么這樣思考問題。
對策三:探索條件、結(jié)論換一下行嗎?
對策四:思考有其他結(jié)論嗎?
對策五:我能得到什么解題規(guī)律?
畏難情緒
有些學(xué)生會認(rèn)為數(shù)學(xué)思想深不可測、高不可攀,其實每一道數(shù)學(xué)題之中都包含著數(shù)學(xué)思想方法。數(shù)學(xué)思想方法是指導(dǎo)解題的十分重要的方針,有利于培養(yǎng)學(xué)生思維的廣闊性、深刻性、靈活性和組織性。
對策
對策一:數(shù)學(xué)思想方法并不神秘,它蘊(yùn)藏在題目中。
對策二:了解一些數(shù)學(xué)思想,找到幾道典型題。
對策三:解題完畢問自己“我運(yùn)用了什么數(shù)學(xué)思想方法”?
對策四:解題前問自己從什么角度去思考。
對策五:請老師介紹一些數(shù)學(xué)思想方法。
看過“初三數(shù)學(xué)知識的思維導(dǎo)圖”的人還看了: