納米科學(xué)和技術(shù)的二次浪潮
摘要:在過去的十年里納米科學(xué)的首次浪潮澎湃而過。在此期間,國際、國內(nèi)以及香港的學(xué)者已向世人證實他們可以采用“build-up”或“build-down”的辦法制造大量的納米管、納米線以及納米團簇。這些努力已經(jīng)表明,如果納米結(jié)構(gòu)能夠低廉地制造,那我們就會有更豐碩的收獲。尺度小于20納米的結(jié)構(gòu)會展現(xiàn)非經(jīng)典的性質(zhì),這提供給我們一個用全新的想法來制造功能器件的基礎(chǔ)。在半導(dǎo)體工業(yè),制造結(jié)構(gòu)尺寸小于70納米器件的能力允許器件的持續(xù)微型化。在下一個10年中,納米科學(xué)和技術(shù)的另次浪潮將可能來臨。在這個新時期,科學(xué)家和工程師需要展示人們對納米結(jié)構(gòu)的期待功能以及證實他們的進(jìn)一步的潛力,擁有在納米結(jié)構(gòu)實際器件的尺寸、組份、有序和純度上的良好控制能力將實現(xiàn)人們期望的功能。在本文中,我們將討論納米科學(xué)和技術(shù)在新時期里發(fā)展所面對的困難和挑戰(zhàn)。一系列新的方法將被討論。我們還將討論倘若這些困難能夠被克服我們可能會有的收獲。
關(guān)鍵詞:納米科學(xué)納米技術(shù)納米管納米線納米團簇半導(dǎo)體
NanoscienceandNanotechnology–theSecondRevolution
Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.
Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor
I.引言
納米科學(xué)和技術(shù)所涉及的是具有尺寸在1-100納米范圍的結(jié)構(gòu)的制備和表征。在這個領(lǐng)域的研究舉世矚目。例如,美國政府2001財政年度在納米尺度科學(xué)上的投入要比2000財政年增長83%,達(dá)到5億美金。有兩個主要的理由導(dǎo)致人們對納米尺度結(jié)構(gòu)和器件的興趣的增加。第一個理由是,納米結(jié)構(gòu)(尺度小于20納米)足夠小以至于量子力學(xué)效應(yīng)占主導(dǎo)地位,這導(dǎo)致非經(jīng)典的行為,譬如,量子限制效應(yīng)和分立化的能態(tài)、庫侖阻塞以及單電子邃穿等。這些現(xiàn)象除引起人們對基礎(chǔ)物理的興趣外,亦給我們帶來全新的器件制備和功能實現(xiàn)的想法和觀念,例如,單電子輸運器件和量子點激光器等。第二個理由是,在半導(dǎo)體工業(yè)有器件持續(xù)微型化的趨勢。根據(jù)“國際半導(dǎo)體技術(shù)路向(2001)“雜志,2005年前動態(tài)隨機存取存儲器(DRAM)和微處理器(MPU)的特征尺寸預(yù)期降到80納米,而MPU中器件的柵長更是預(yù)期降到45納米。然而,到2003年在MPU制造中一些不知其解的問題預(yù)期就會出現(xiàn)。到2005年類似的問題將預(yù)期出現(xiàn)在DRAM的制造過程中。半導(dǎo)體器件特征尺寸的深度縮小不僅要求新型光刻技術(shù)保證能使尺度刻的更小,而且要求全新的器件設(shè)計和制造方案,因為當(dāng)MOS器件的尺寸縮小到一定程度時基礎(chǔ)物理極限就會達(dá)到。隨著傳統(tǒng)器件尺寸的進(jìn)一步縮小,量子效應(yīng)比如載流子邃穿會造成器件漏電流的增加,這是我們不想要的但卻是不可避免的。因此,解決方案將會是制造基于量子效應(yīng)操作機制的新型器件,以便小物理尺寸對器件功能是有益且必要的而不是有害的。如果我們能夠制造納米尺度的器件,我們肯定會獲益良多。譬如,在電子學(xué)上,單電子輸運器件如單電子晶體管、旋轉(zhuǎn)柵門管以及電子泵給我們帶來諸多的微尺度好處,他們僅僅通過數(shù)個而非以往的成千上萬的電子來運作,這導(dǎo)致超低的能量消耗,在功率耗散上也顯著減弱,以及帶來快得多的開關(guān)速度。在光電子學(xué)上,量子點激光器展現(xiàn)出低閾值電流密度、弱閾值電流溫度依賴以及大的微分增益等優(yōu)點,其中大微分增益可以產(chǎn)生大的調(diào)制帶寬。在傳感器件應(yīng)用上,納米傳感器和納米探測器能夠測量極其微量的化學(xué)和生物分子,而且開啟了細(xì)胞內(nèi)探測的可能性,這將導(dǎo)致生物醫(yī)學(xué)上迷你型的侵入診斷技術(shù)出現(xiàn)。納米尺度量子點的其他器件應(yīng)用,比如,鐵磁量子點磁記憶器件、量子點自旋過濾器及自旋記憶器等,也已經(jīng)被提出,可以肯定這些應(yīng)用會給我們帶來許多潛在的好處。總而言之,無論是從基礎(chǔ)研究(探索基于非經(jīng)典效應(yīng)的新物理現(xiàn)象)的觀念出發(fā),還是從應(yīng)用(受因結(jié)構(gòu)減少空間維度而帶來的優(yōu)點以及因應(yīng)半導(dǎo)體器件特征尺寸持續(xù)減小而需要這兩個方面的因素驅(qū)使)的角度來看,納米結(jié)構(gòu)都是令人極其感興趣的。
II.納米結(jié)構(gòu)的制備———首次浪潮
有兩種制備納米結(jié)構(gòu)的基本方法:build-up和build-down。所謂build-up方法就是將已預(yù)制好的納米部件(納米團簇、納米線以及納米管)組裝起來;而build-down方法就是將納米結(jié)構(gòu)直接地淀積在襯底上。前一種方法包含有三個基本步驟:1)納米部件的制備;2)納米部件的整理和篩選;3)納米部件組裝成器件(這可以包括不同的步驟如固定在襯底及電接觸的淀積等等)。“build-up“的優(yōu)點是個體納米部件的制備成本低以及工藝簡單快捷。有多種方法如氣相合成以及膠體化學(xué)合成可以用來制備納米元件。目前,在國內(nèi)、在香港以及在世界上許多的實驗室里這些方法正在被用來合成不同材料的納米線、納米管以及納米團簇。這些努力已經(jīng)證明了這些方法的有效性。這些合成方法的主要缺點是材料純潔度較差、材料成份難以控制以及相當(dāng)大的尺寸和形狀的分布。此外,這些納米結(jié)構(gòu)的合成后工藝再加工相當(dāng)困難。特別是,如何整理和篩選有著窄尺寸分布的納米元件是一個至關(guān)重要的問題,這一問題迄今仍未有解決。盡管存在如上的困難和問題,“build-up“依然是一種能合成大量納米團簇以及納米線、納米管的有效且簡單的方法??墒沁@些合成的納米結(jié)構(gòu)直到目前為止仍然難以有什么實際應(yīng)用,這是因為它們?nèi)狈嵱盟燎蟮某叽?、組份以及材料純度方面的要求。而且,因為同樣的原因用這種方法合成的納米結(jié)構(gòu)的功能性質(zhì)相當(dāng)差。不過上述方法似乎適宜用來制造傳感器件以及生物和化學(xué)探測器,原因是垂直于襯底生長的納米結(jié)構(gòu)適合此類的應(yīng)用要求。
“Build-down”方法提供了杰出的材料純度控制,而且它的制造機理與現(xiàn)代工業(yè)裝置相匹配,換句話說,它是利用廣泛已知的各種外延技術(shù)如分子束外延(MBE)、化學(xué)氣相淀積(MOVCD)等來進(jìn)行器件制造的傳統(tǒng)方法。 “Build-down”方法的缺點是較高的成本。在“build-down”方法中有幾條不同的技術(shù)路徑來制造納米結(jié)構(gòu)。最簡單的一種,也是最早使用的一種是直接在襯底上刻蝕結(jié)構(gòu)來得到量子點或者量子線。另外一種是包括用離子注入來形成納米結(jié)構(gòu)。這兩種技術(shù)都要求使用開有小尺寸窗口的光刻版。第三種技術(shù)是通過自組裝機制來制造量子點結(jié)構(gòu)。自組裝方法是在晶格失配的材料中自然生長納米尺度的島。在Stranski-Krastanov生長模式中,當(dāng)材料生長到一定厚度后,二維的逐層生長將轉(zhuǎn)換成三維的島狀生長,這時量子點就會生成。業(yè)已證明基于自組裝量子點的激光器件具有比量子阱激光器更好的性能。量子點器件的飽和材料增益要比相應(yīng)的量子阱器件大50倍,微分增益也要高3個量級。閾值電流密度低于100A/cm2、室溫輸出功率在瓦特量級(典型的量子阱基激光器的輸出功率是5-50mW)的連續(xù)波量子點激光器也已經(jīng)報道。無論是何種材料系統(tǒng),量子點激光器件都預(yù)期具有低閾值電流密度,這預(yù)示目前還要求在大閾值電流條件下才能激射的寬帶系材料如III組氮化物基激光器還有很大的顯著改善其性能的空間。目前這類器件的性能已經(jīng)接近或達(dá)到商業(yè)化器件所要求的指標(biāo),預(yù)期量子點基的此類材料激光器將很快在市場上出現(xiàn)。量子點基光電子器件的進(jìn)一步改善主要取決于量子點幾何結(jié)構(gòu)的優(yōu)化。雖然在生長條件上如襯底溫度、生長元素的分氣壓等的變化能夠在一定程度上控制點的尺寸和密度,自組裝量子點還是典型底表現(xiàn)出在大小、密度及位置上的隨機變化,其中僅僅是密度可以粗糙地控制。自組裝量子點在尺寸上的漲落導(dǎo)致它們的光發(fā)射的非均勻展寬,因此減弱了使用零維體系制作器件所期望的優(yōu)點。由于量子點尺寸的統(tǒng)計漲落和位置的隨機變化,一層含有自組裝量子點材料的光致發(fā)光譜典型地很寬。在豎直疊立的多層量子點結(jié)構(gòu)中這種譜展寬效應(yīng)可以被減弱。如果隔離層足夠薄,豎直疊立的多層量子點可典型地展現(xiàn)出豎直對準(zhǔn)排列,這可以有效地改善量子點的均勻性。然而,當(dāng)隔離層薄的時候,在一列量子點中存在載流子的耦合,這將失去因使用零維系統(tǒng)而帶來的優(yōu)點。怎樣優(yōu)化量子點的尺寸和隔離層的厚度以便既能獲得好均勻性的量子點又同時保持載流子能夠限制在量子點的個體中對于獲得器件的良好性能是至關(guān)重要的。
很清楚納米科學(xué)的首次浪潮發(fā)生在過去的十年中。在這段時期,研究者已經(jīng)證明了納米結(jié)構(gòu)的許多嶄新的性質(zhì)。學(xué)者們更進(jìn)一步征明可以用“build-down”或者“build-up”方法來進(jìn)行納米結(jié)構(gòu)制造。這些成果向我們展示,如果納米結(jié)構(gòu)能夠大量且廉價地被制造出來,我們必將收獲更多的成果。
在未來的十年中,納米科學(xué)和技術(shù)的第二次浪潮很可能發(fā)生。在這個新的時期,科學(xué)家和工程師需要征明納米結(jié)構(gòu)的潛能以及期望功能能夠得到兌現(xiàn)。只有獲得在尺寸、成份、位序以及材料純度上良好可控能力并成功地制造出實用器件才能實現(xiàn)人們對納米器件所期望的功能。因此,納米科學(xué)的下次浪潮的關(guān)鍵點是納米結(jié)構(gòu)的人為可控性。
III.納米結(jié)構(gòu)尺寸、成份、位序以及密度的控制——第二次浪潮
為了充分發(fā)揮量子點的優(yōu)勢之處,我們必須能夠控制量子點的位置、大小、成份已及密度。其中一個可行的方法是將量子點生長在已經(jīng)預(yù)刻有圖形的襯底上。由于量子點的橫向尺寸要處在10-20納米范圍(或者更小才能避免高激發(fā)態(tài)子能級效應(yīng),如對于GaN材料量子點的橫向尺寸要小于8納米)才能實現(xiàn)室溫工作的光電子器件,在襯底上刻蝕如此小的圖形是一項挑戰(zhàn)性的技術(shù)難題。對于單電子晶體管來說,如果它們能在室溫下工作,則要求量子點的直徑要小至1-5納米的范圍。這些微小尺度要求已超過了傳統(tǒng)光刻所能達(dá)到的精度極限。有幾項技術(shù)可望用于如此的襯底圖形制作。
—電子束光刻通常可以用來制作特征尺度小至50納米的圖形。如果特殊薄膜能夠用作襯底來最小化電子散射問題,那特征尺寸小至2納米的圖形可以制作出來。在電子束光刻中的電子散射因為所謂近鄰干擾效應(yīng)(proximityeffect)而嚴(yán)重影響了光刻的極限精度,這個效應(yīng)造成制備空間上緊鄰的納米結(jié)構(gòu)的困難。這項技術(shù)的主要缺點是相當(dāng)費時。例如,刻寫一張4英寸的硅片需要時間1小時,這不適宜于大規(guī)模工業(yè)生產(chǎn)。電子束投影系統(tǒng)如 SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在發(fā)展之中以便使這項技術(shù)較適于用于規(guī)模生產(chǎn)。目前,耗時和近鄰干擾效應(yīng)這兩個問題還沒有得到解決。
—聚焦離子束光刻是一種機制上類似于電子束光刻的技術(shù)。但不同于電子束光刻的是這種技術(shù)并不受在光刻膠中的離子散射以及從襯底來的離子背散射影響。它能刻出特征尺寸細(xì)到6納米的圖形,但它也是一種耗時的技術(shù),而且高能離子束可能造成襯底損傷。
—掃描微探針術(shù)可以用來劃刻或者氧化襯底表面,甚至可以用來操縱單個原子和分子。最常用的方法是基于材料在探針作用下引入的高度局域化增強的氧化機制的。此項技術(shù)已經(jīng)用來刻劃金屬(Ti和Cr)、半導(dǎo)體(Si和GaAs)以及絕緣材料(Si3N4和silohexanes),還用在LB膜和自聚集分子單膜上。此種方法具有可逆和簡單易行等優(yōu)點。引入的氧化圖形依賴于實驗條件如掃描速度、樣片偏壓以及環(huán)境濕度等??臻g分辨率受限于針尖尺寸和形狀(雖然氧化區(qū)域典型地小于針尖尺寸)。這項技術(shù)已用于制造有序的量子點陣列和單電子晶體管。這項技術(shù)的主要缺點是處理速度慢(典型的刻寫速度為1mm/s量級)。然而,最近在原子力顯微術(shù)上的技術(shù)進(jìn)展—使用懸臂樑陣列已將掃描速度提高到4mm/s。此項技術(shù)的顯著優(yōu)點是它的杰出的分辨率和能產(chǎn)生任意幾何形狀的圖形能力。但是,是否在刻寫速度上的改善能使它適用于除制造光刻版和原型器件之外的其他目的還有待于觀察。直到目前為止,它是一項能操控單個原子和分子的唯一技術(shù)。
—多孔膜作為淀積掩版的技術(shù)。多孔膜能用多種光刻術(shù)再加腐蝕來制備,它也可以用簡單的陽極氧化方法來制備。鋁膜在酸性腐蝕液中陽極氧化就可以在鋁膜上產(chǎn)生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范圍。制備多孔膜的其他方法是從納米溝道玻璃膜復(fù)制。用這項技術(shù)已制造出含有細(xì)至40nm的空洞的鎢、鉬、鉑以及金膜。
—倍塞(diblock)共聚物圖形制作術(shù)是一種基于不同聚合物的混合物能夠產(chǎn)生可控及可重復(fù)的相分離機制的技術(shù)。目前,經(jīng)過反應(yīng)離子刻蝕后,在旋轉(zhuǎn)涂敷的倍塞共聚物層中產(chǎn)生的圖形已被成功地轉(zhuǎn)移到Si3N4膜上,圖形中空洞直徑20nm,空洞之間間距40nm。在聚苯乙烯基體中的自組織形成的聚異戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱體)可以被臭氧去掉或者通過鋨染色而保留下來。在第一種情況,空洞能夠在氮化硅上產(chǎn)生;在第二種情況,島狀結(jié)構(gòu)能夠產(chǎn)生。目前利用倍塞共聚物光刻技術(shù)已制造出GaAs納米結(jié)構(gòu),結(jié)構(gòu)的側(cè)向特征尺寸約為23nm,密度高達(dá) 1011/cm2。
—與倍塞共聚物圖形制作術(shù)緊密相關(guān)的一項技術(shù)是納米球珠光刻術(shù)。此項技術(shù)的基本思路是將在旋轉(zhuǎn)涂敷的球珠膜中形成的圖形轉(zhuǎn)移到襯底上。各種尺寸的聚合物球珠是商業(yè)化的產(chǎn)品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比較困難的。用球珠單層膜已能制備出特征尺寸約為球珠直徑1/5的三角形圖形。雙層膜納米球珠掩膜版也已被制作出。能夠在金屬、半導(dǎo)體以及絕緣體襯底上使用納米球珠光刻術(shù)的能力已得到確認(rèn)。納米球珠光刻術(shù)(納米球珠膜的旋轉(zhuǎn)涂敷結(jié)合反應(yīng)離子刻蝕)已被用來在一些半導(dǎo)體表面上制造空洞和柱狀體納米結(jié)構(gòu)。
—將圖形從母體版轉(zhuǎn)移到襯底上的其他光刻技術(shù)。幾種所謂“軟光刻“方法,比如復(fù)制鑄模法、微接觸印刷法、溶劑輔助鑄模法以及用硬模版浮雕法等已被探索開發(fā)。其中微接觸印刷法已被證明只能用來刻制特征尺寸大于100nm的圖形。復(fù)制鑄模法的可能優(yōu)點是ellastometric聚合物可被用來制作成一個戳子,以便可用同一個戳子通過對戳子的機械加壓能夠制作不同側(cè)向尺寸的圖形。在溶劑輔助鑄模法和用硬模版浮雕法(或通常稱之為納米壓印術(shù))之間的主要差異是,前者中溶劑被用于軟化聚合物,而后者中軟化聚合物依靠的是溫度變化。溶劑輔助鑄模法的可能優(yōu)點是不需要加熱。納米壓印術(shù)已被證明可用來制作具有容量達(dá) 400Gb/in2的納米激光光盤,在6英寸硅片上刻制亞100nm分辨的圖形,刻制10nmX40nm面積的長方形,以及在4英寸硅片上進(jìn)行圖形刻制。除傳統(tǒng)的平面納米壓印光刻法之外,滾軸型納米壓印光刻法也已被提出。在此類技術(shù)中溫度被發(fā)現(xiàn)是一個關(guān)鍵因素。此外,應(yīng)該選用具有較低的玻璃化轉(zhuǎn)變溫度的聚合物。為了取得高產(chǎn),下列因素要解決:
1)大的戳子尺寸
2)高圖形密度戳子
3)低穿刺(lowsticking)
4)壓印溫度和壓力的優(yōu)化
5)長戳子壽命。
具有低穿刺率的大尺寸戳子已經(jīng)被制作出來。已有少量研究工作在試圖優(yōu)化壓印溫度和壓力,但顯然需要進(jìn)行更多的研究工作才能得到溫度和壓力的優(yōu)化參數(shù)。高圖形密度戳子的制作依然在發(fā)展之中。還沒有足夠量的工作來研究戳子的壽命問題。曾有研究報告報道,覆蓋有超薄的特氟隆類薄膜的模板可以用來進(jìn)行50次的浮刻而不需要中間清洗。報告指出最大的性能退化來自于嵌在戳子和聚合物之間的灰塵顆粒。如果戳子是從ellastometric母版制作出來的,抗穿刺層可能需要使用,而且進(jìn)行大約5次壓印后需要更換。值得關(guān)心的其他可能問題包括鑲嵌的灰塵顆引起的戳子損傷或聚合物中圖形損傷,以及連續(xù)壓印之間戳子的清洗需要等。盡管進(jìn)一步的優(yōu)化和改良是必需的,但此項技術(shù)似乎有希望獲得高生產(chǎn)率。壓印過程包括對準(zhǔn)、加熱及冷卻循環(huán)等,整個過程所需時間大約20分鐘。使用具有較低玻璃化轉(zhuǎn)換溫度的聚合物可以縮短加熱和冷卻循環(huán)所需時間,因此可以縮短整個壓印過程時間。
IV.納米制造所面對的困難和挑戰(zhàn)
上述每一種用于在襯底上圖形刻制的技術(shù)都有其優(yōu)點和缺點。目前,似乎沒有哪個單一種技術(shù)可以用來高產(chǎn)量地刻制納米尺度且任意形狀的圖形。我們可以將圖形刻制的全過程分成下列步驟:
1.在一塊模版上刻寫圖形
2.在過渡性或者功能性材料上復(fù)制模版上的圖形
3.轉(zhuǎn)移在過渡性或者功能性材料上復(fù)制的圖形。
很顯然第二步是最具挑戰(zhàn)性的一步。先前描述的各項技術(shù),例如電子束光刻或者掃描微探針光刻技術(shù),已經(jīng)能夠刻寫非常細(xì)小的圖形。然而,這些技術(shù)都因相當(dāng)費時而不適于規(guī)模生產(chǎn)。納米壓印術(shù)則因可作多片并行處理而可能解決規(guī)模生產(chǎn)問題。此項技術(shù)似乎很有希望,但是在它能被廣泛應(yīng)用之前現(xiàn)存的嚴(yán)重的材料問題必須加以解決。納米球珠和倍塞共聚物光刻術(shù)則提供了將第一步和第二步整合的解決方案。在這些技術(shù)中,圖形由球珠的尺寸或者倍塞共聚物的成分來確定。然而,用這兩種光刻術(shù)刻寫的納米結(jié)構(gòu)的形狀非常有限。當(dāng)這些技術(shù)被人們看好有很大的希望用來刻寫圖形以便生長出有序的納米量子點陣列時,它們卻完全不適于用來刻制任意形狀和復(fù)雜結(jié)構(gòu)的圖形。為了能夠制造出高質(zhì)量的納米器件,不但必須能夠可靠地將圖形轉(zhuǎn)移到功能材料上,還必須保證在刻蝕過程中引入最小的損傷。濕法腐蝕技術(shù)典型地不產(chǎn)生或者產(chǎn)生最小的損傷,可是濕法腐蝕并不十分適于制備需要陡峭側(cè)墻的結(jié)構(gòu),這是因為在掩模版下一定程度的鉆蝕是不可避免的,而這個鉆蝕決定性地影響微小結(jié)構(gòu)的刻制。另一方面,用干法刻蝕技術(shù),譬如,反應(yīng)離子刻蝕(RIE)或者電子回旋共振(ECR)刻蝕,在優(yōu)化條件下可以獲得陡峭的側(cè)墻。直到今天大多數(shù)刻蝕研究都集中于刻蝕速度以及刻蝕出垂直墻的能力,而關(guān)于刻蝕引入損傷的研究嚴(yán)重不足。已有研究表明,能在表面下100nm深處探測到刻蝕引入的損傷。當(dāng)器件中的個別有源區(qū)尺寸小于100nm時,如此大的損傷是不能接受的。還有就是因為所有的納米結(jié)構(gòu)都有大的表面-體積比,必須盡可能地減少在納米結(jié)構(gòu)表面或者靠近的任何缺陷。
隨著器件持續(xù)微型化的趨勢的發(fā)展,普通光刻技術(shù)的精度將很快達(dá)到它的由光的衍射定律以及材料物理性質(zhì)所確定的基本物理極限。通過采用深紫外光和相移版,以及修正光學(xué)近鄰干擾效應(yīng)等措施,特征尺寸小至80nm的圖形已能用普通光刻技術(shù)制備出。然而不大可能用普通光刻技術(shù)再進(jìn)一步顯著縮小尺寸。采用X光和EUV的光刻技術(shù)仍在研發(fā)之中,可是發(fā)展這些技術(shù)遇到在光刻膠以及模版制備上的諸多困難。目前來看,雖然也有一些具挑戰(zhàn)性的問題需要解決,特別是需要克服電子束散射以及相關(guān)聯(lián)的近鄰干擾效應(yīng)問題,但投影式電子束光刻似乎是有希望的一種技術(shù)。掃描微探針技術(shù)提供了能分辨單個原子或分子的無可匹敵的精度,可是此項技術(shù)卻有固有的慢速度,目前還不清楚通過給它加裝陣列懸臂樑能否使它達(dá)到可以接受的刻寫速度。利用轉(zhuǎn)移在自組裝薄膜中形成的圖形的技術(shù),例如倍塞共聚物以及納米球珠刻寫技術(shù)則提供了實現(xiàn)成本不是那么昂貴的大面積圖形刻寫的一種可能途徑。然而,在這種方式下形成的圖形僅局限于點狀或者柱狀圖形。對于制造相對簡單的器件而言,此類技術(shù)是足夠用的,但并不能解決微電子工業(yè)所面對的問題。需要將圖形從一張模版復(fù)制到聚合物膜上的各種所謂“軟光刻“方法提供了一種并行刻寫的技術(shù)途徑。模版可以用其他慢寫技術(shù)來刻制,然后在模版上的圖形可以通過要么熱輔助要么溶液輔助的壓印法來復(fù)制。同一塊模版可以用來刻寫多塊襯底,而且不像那些依賴化學(xué)自組裝圖形形成機制的方法,它可以用來刻制任意形狀的圖形。然而,要想獲得高生產(chǎn)率,某些技術(shù)問題如穿刺及因灰塵導(dǎo)致的損傷等問題需要加以解決。對一個理想的納米刻寫技術(shù)而言,它的運行和維修成本應(yīng)該低,它應(yīng)具備可靠地制備尺寸小但密度高的納米結(jié)構(gòu)的能力,還應(yīng)有在非平面上刻制圖形的能力以及制備三維結(jié)構(gòu)的功能。此外,它也應(yīng)能夠做高速并行操作,而且引入的缺陷密度要低。然而時至今日,仍然沒有任何一項能制作亞 100nm圖形的單項技術(shù)能同時滿足上述所有條件?,F(xiàn)在還難說是否上述技術(shù)中的一種或者它們的某種組合會取代傳統(tǒng)的光刻技術(shù)。究竟是現(xiàn)有刻寫技術(shù)的組合還是一種全新的技術(shù)會成為最終的納米刻寫技術(shù)還有待于觀察。
另一項挑戰(zhàn)是,為了更新我們關(guān)于納米結(jié)構(gòu)的認(rèn)識和知識,有必要改善現(xiàn)有的表征技術(shù)或者發(fā)展一種新技術(shù)能夠用來表征單個納米尺度物體。由于自組裝量子點在尺寸上的自然漲落,可信地表征單個納米結(jié)構(gòu)的能力對于研究這些結(jié)構(gòu)的物理性質(zhì)是絕對至關(guān)重要的。目前表征單個納米結(jié)構(gòu)的能力非常有限。譬如,沒有一種結(jié)構(gòu)表征工具能夠用來確定一個納米結(jié)構(gòu)的表面結(jié)構(gòu)到0.1À的精度或者更佳。透射電子顯微術(shù)(TEM)能夠用來研究一個晶體結(jié)構(gòu)的內(nèi)部情況,但是它不能提供有關(guān)表面以及靠近表面的原子排列情況的信息。掃描隧道顯微術(shù)(STM)和原子力顯微術(shù)(AFM)能夠給出表面某區(qū)域的形貌,但它們并不能提供定量結(jié)構(gòu)信息好到能仔細(xì)理解表面性質(zhì)所要求的精度。當(dāng)近場光學(xué)方法能夠給出局部區(qū)域光譜信息時,它們能給出的關(guān)于局部雜質(zhì)濃度的信息則很有限。除非目前用來表征表面和體材料的技術(shù)能夠擴展到能夠用來研究單個納米體的表面和內(nèi)部情況,否則能夠得到的有關(guān)納米結(jié)構(gòu)的所有重要結(jié)構(gòu)和組份的定量信息非常有限。
V.展望
目前,已有不少納米尺度圖形刻制技術(shù),它們僅有的短處要么是刻寫速度慢要么是刻寫復(fù)雜圖形的能力有限。這些技術(shù)可以用來制造簡單的納米原型器件,這將能使我們研究這些器件的性質(zhì)以及探討優(yōu)化器件結(jié)構(gòu)以便進(jìn)一步地改善它們的性能。必須發(fā)展新的表征技術(shù),這不單是為了器件表征,也是為了能使我們擁有一個對器件制造過程中的必要工藝如版對準(zhǔn)的能進(jìn)行監(jiān)控的手段。隨著器件尺度的持續(xù)縮小,對制造技術(shù)的要求會更苛刻,理所當(dāng)然地對評判方法的要求也變得更嚴(yán)格。這些評判方法得能夠用來評判制備出的結(jié)構(gòu)是否滿足設(shè)計要求以及它們是否處于可接受的誤差范圍內(nèi)。因此,除怎樣能夠?qū)⒉牧峡讨瞥商卣鞒叽缭?-100nm尺寸范圍結(jié)構(gòu)的問題外,還有兩個重要的問題,那就是我們想要制備的哪些種類的新結(jié)構(gòu)能充分利用在小尺度條件下所展現(xiàn)的量子效應(yīng),以及怎樣表征所制備出來的結(jié)構(gòu)。電子工業(yè)正面臨雙重挑戰(zhàn),首先要克服將器件尺寸縮小到100nm以下的技術(shù)困難,第二個困難是需要發(fā)明新器件以便能夠取代尺度縮小到其操作機制崩潰的現(xiàn)有器件。因為目前還不清楚哪種結(jié)構(gòu)將能夠取代現(xiàn)在的電子器件,盡管傳統(tǒng)光刻技術(shù)在刻制納米結(jié)構(gòu)上的局限性,但現(xiàn)在談?wù)撧饤墏鹘y(tǒng)技術(shù)尚為之過早。光電子工業(yè)則面對相對容易的困難,它的困難主要集中在圖形的刻制問題上。這僅僅影響器件有源區(qū)的尺寸以及幾何結(jié)構(gòu),但不存在需要克服的在器件運行機制上的基本極限。隨著光學(xué)有源區(qū)尺寸的縮小,嶄新的光學(xué)現(xiàn)象很有可能被發(fā)現(xiàn),這可能導(dǎo)致發(fā)明新的光電子器件。然而,不象電子工業(yè)發(fā)展那樣需要尋找MOS晶體管的替代品,光電子工業(yè)并沒有如此的立時尖銳問題需要迫切解決。納米探測器和納米傳感器是一個全新的領(lǐng)域,目前還難以預(yù)測它的進(jìn)一步發(fā)展趨勢。然而,基于對嶄新診斷技術(shù)的預(yù)期需要,我們有理由相信這將是一個快速發(fā)展的領(lǐng)域??偫ㄆ饋?,在所有三個主要領(lǐng)域里應(yīng)用納米結(jié)構(gòu)所要求的共同點是對納米結(jié)構(gòu)的尺寸、材料純度、位序以及成份的精確控制。一旦這個問題能夠解決,就會有大量的嶄新器件誕生和被研究。
Acknowledgement:ThisworkissupportedbyagrantfromtheResearchGrantsCounciloftheHongKong