大學數(shù)學建模論文參考
大學數(shù)學建模論文參考
數(shù)學建模是從實際課題中抽象、提煉出數(shù)學模型的過程。人們常對實際事物建立種種數(shù)學模型以期通過對該模型的考察來描述、解釋、預計或分析出實際事物相關(guān)的規(guī)律。下文是學習啦小編為大家搜集整理的關(guān)于大學數(shù)學建模論文參考的內(nèi)容,歡迎大家閱讀參考!
大學數(shù)學建模論文參考篇1
試析數(shù)學建模方法及其應(yīng)用
【摘要】 數(shù)學模型是數(shù)學知識和數(shù)學應(yīng)用的橋梁,研究和學習數(shù)學模型,能幫助學生探索數(shù)學的應(yīng)用,對數(shù)學學習產(chǎn)生興趣,有利培養(yǎng)學生的創(chuàng)新意識和實踐能力,加強數(shù)學建模教學與學習對學生的智力開發(fā)具有深遠的意義。
【關(guān)鍵詞】 數(shù)學建模 建模方法 應(yīng)用
數(shù)學建模是一種數(shù)學的思考方法,是運用數(shù)學的語言和方法,通過抽象、簡化建立能近似刻畫并解決實際問題的一種強有力的數(shù)學手段。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學的符號和語言,把它表述為數(shù)學式子,也就是數(shù)學模型,然后用通過計算得到的模型結(jié)果來解釋實際問題,并接受實際的檢驗。這個建立數(shù)學模型的全過程就稱為數(shù)學建模。
1 數(shù)學模型的基本概述
數(shù)學模型就是對于一個特定的對象為了一個特定目標,根據(jù)特有的內(nèi)在規(guī)律,做出必要的簡化假設(shè),運用適當?shù)臄?shù)學工具,得到的一個數(shù)學結(jié)構(gòu)。數(shù)學結(jié)構(gòu)可以是 數(shù)學公式,算法、表格、圖示等。數(shù)學模型法就是把實際問題加以抽象概括,建立相應(yīng)的數(shù)學模型,利用這些模型來研究實際問題的一般數(shù)學方法。教師在應(yīng)用題教學中要滲透這種方法和思想,要注重并強調(diào)如何從實際問題中發(fā)現(xiàn)并抽象出數(shù)學問題,如何用數(shù)學模型(包括數(shù)學概念、公式、方程、不等式函數(shù)等)來表達實際問題。
2 數(shù)學建模的重要意義
電子計算機推動了數(shù)學建模的發(fā)展;電子計算機推動了數(shù)學建模的發(fā)展;數(shù)學建模在工程技術(shù)領(lǐng)域應(yīng)用廣泛。應(yīng)用數(shù)學去解決各類實際問題時,建立數(shù)學模型是重要關(guān)鍵。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數(shù)學結(jié)構(gòu)的過程。要通過調(diào)查、收集數(shù)據(jù)資料,觀察和研究實際對象的固有特征和內(nèi)在規(guī)律,抓住問題的主要矛盾,建立起反映實際問題的數(shù)量關(guān)系,然后利用數(shù)學的理論和方法去分折和解決問題。數(shù)學建模越來越受到數(shù)學界和工程界的普遍重視,已成為現(xiàn)代科技工作者重要的必備能力。
3 數(shù)學建模的主要方法和步驟:
3.1 數(shù)學建模的步驟可以分為幾個方面
(1)模型準備。首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特征。(2)模型假設(shè)。根據(jù)對象的特征和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設(shè),是建模至關(guān)重要的一步。(3)模型構(gòu)成。根據(jù)所作的假設(shè)分析對象的因果關(guān)系,利用對象的內(nèi)在規(guī)律和適當?shù)臄?shù)學工具,構(gòu)造各個量間的等式關(guān)系或其它數(shù)學結(jié)構(gòu)。(4)模型求解??梢圆捎媒夥匠?、畫圖形、證明定理、邏輯運算、數(shù)值運算等各種傳統(tǒng)的和近代的數(shù)學方法,特別是計算機技術(shù)。(5)模型分析。對模型解答進行數(shù)學上的分析,特別是誤差分析,數(shù)據(jù)穩(wěn)定性分析。
3.2 數(shù)學建模采用的主要方法包括
a.機理分析法。根據(jù)對客觀事物特性的認識從基本物理定律以及系統(tǒng)的結(jié)構(gòu)數(shù)據(jù)來推導出模型。(1)比例分析法:建立變量之間函數(shù)關(guān)系的最基本最常用的方法。(2)代數(shù)方法:求解離散問題(離散的數(shù)據(jù)、符號、圖形)的主要方法。(3)邏輯方法:是數(shù)學理論研究的重要方法,對社會學和經(jīng)濟學等領(lǐng)域的實際問題解決對策中得到廣泛應(yīng)用。(4)常微分方程:解決兩個變量之間的變化規(guī)律,關(guān)鍵是建立“瞬時變化率”的表達式。(5)偏微分方程:解決因變量與兩個以上自變量之間的變化規(guī)律。
b.數(shù)據(jù)分析法:通過對量測數(shù)據(jù)的統(tǒng)計分析,找出與數(shù)據(jù)擬合最好的模型
可以包括四個方法:(1)回歸分析法(2)時序分析法(3)回歸分析法(4)時序分析法
c.其他方法:例如計算機仿真(模擬)、因子試驗法和人工現(xiàn)實法
4 數(shù)學建模應(yīng)用
數(shù)學建模應(yīng)用就是將數(shù)學建模的方法從目前純競賽和純科研的領(lǐng)域引向商業(yè)化領(lǐng)域,解決社會生產(chǎn)中的實際問題,接受市場的考驗。可以涉足企業(yè)管理、市場分類、經(jīng)濟計量學、金融證券、數(shù)據(jù)挖掘與分析預測、物流管理、供應(yīng)鏈、信息系統(tǒng)、交通運輸、軟件制作、數(shù)學建模培訓等領(lǐng)域,提供數(shù)學建模及數(shù)學模型解決方案及咨詢服務(wù),是對咨詢服務(wù)業(yè)和數(shù)學建模融合的一種全新的嘗試。例如北京交通大學在校學生組建了國內(nèi)第一支數(shù)學建模應(yīng)用團隊,積極地展開數(shù)學建模應(yīng)用推廣和應(yīng)用。
5 努力倡導數(shù)學建?;顒拥囊?/p>
5.1 積極開展數(shù)學建?;顒?鼓勵大家積極參與
為了提高學生的數(shù)學建模能力,學??梢蚤_展數(shù)學建?;顒?可以是競賽制的和非競賽制的,應(yīng)當對成績比較優(yōu)秀的學生給予一定的獎勵,從而提高學生的積極性。建模活動要有規(guī)章制度,要比較正規(guī)化,否則可能會達不到預期效果,而且建模過程競賽要保證公平、公開,保證學生不受干擾影響。
5.2 鞏固數(shù)學基礎(chǔ),激發(fā)學生學習興趣
首先數(shù)學建模需要扎實學生的數(shù)學基礎(chǔ),同時學生要具備較好的理論聯(lián)系實際的能力以及抽象能力,還有就是要激發(fā)學生的學習興趣,興趣是學習的最好老師,假設(shè)教學課堂中過于枯燥無味,學生容易產(chǎn)生厭倦情緒,不利于學習。數(shù)學建模過程本質(zhì)是比較有趣的過程,是對實際生活進行簡化的一個過程,生動和有實際價值的。鼓勵學生相互交流,促使學生用建模的思維方法去思考和解決生活中的實際問題,表現(xiàn)優(yōu)秀的同學可以適度給予獎勵評價。
總之,數(shù)學建模能力的培養(yǎng)應(yīng)貫穿于學生的整個學習過程,積極地激發(fā)學生的潛能。數(shù)學應(yīng)用與數(shù)學建模目的是要通過教師培養(yǎng)學生的意識,教會學生方法,讓學生自己去探索?研究?創(chuàng)新,從而提高學生解決問題的能力。 隨著學生參加數(shù)模競賽的積極性廣泛提高,賽題也越來越向?qū)嵱眯园l(fā)展??梢哉f正是數(shù)學建模競賽帶動了數(shù)模一步一步走向生產(chǎn)和實踐中的應(yīng)用。所以,數(shù)學建模廣泛應(yīng)用必成為了社會的發(fā)展趨勢。
參考文獻
[1] 鄭平正.淺談數(shù)學建模在實際問題中的應(yīng)用[J].考試(教研版).2007(01).
[2] 耿朝霞.數(shù)學建模法及應(yīng)用[J].成才之路.2008(03).
[3] 王素舟.數(shù)學建模在數(shù)學教育中的意義[J].陜西教育(高教版).2009(04).
<<<下頁帶來更多的大學數(shù)學建模論文參考