加強(qiáng)數(shù)形結(jié)合提高解題能力數(shù)學(xué)論文
根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)意義,又揭示其幾何直觀,使數(shù)量關(guān)的精確刻劃與空間形式的直觀形象巧妙、和諧地結(jié)合在一起,充分利用這種數(shù)形結(jié)合,尋找解題思路,使問(wèn)題化難為易、化繁為簡(jiǎn),從而得到順利解決。今天學(xué)習(xí)啦小編要與大家分享的是:加強(qiáng)數(shù)形結(jié)合提高解題能力相關(guān)數(shù)學(xué)論文。具體內(nèi)容如下,歡迎閱讀:
加強(qiáng)數(shù)形結(jié)合提高解題能力
一、 緒論
恩格斯說(shuō)過(guò):“數(shù)學(xué)是研究現(xiàn)實(shí)世界的量的關(guān)系與空間形式的科學(xué)”.數(shù)學(xué)中的兩大研究對(duì)象“數(shù)”和“形”的矛盾統(tǒng)一是數(shù)學(xué)發(fā)展的內(nèi)在因素.數(shù)形結(jié)合是貫穿于數(shù)學(xué)發(fā)展的一條主線,使數(shù)學(xué)在實(shí)踐中的應(yīng)用更加廣泛和深遠(yuǎn).一方面,借助于圖形的性質(zhì)將許多抽象的數(shù)學(xué)概念和數(shù)量關(guān)系形象化、簡(jiǎn)單化,給人以直觀感;另一方面,將圖形問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題,可以獲得準(zhǔn)確的結(jié)論.“數(shù)”和“形”的信息轉(zhuǎn)換、相互滲透,不僅使解題簡(jiǎn)潔明快,還開拓解題思路,為研究和探求數(shù)學(xué)問(wèn)題開辟了一條重要的途徑.數(shù)形結(jié)合是連接“數(shù)”和“形”的“橋”,它不僅是一種重要的解題方法,更是一種重要的數(shù)學(xué)思想.高中數(shù)學(xué)學(xué)習(xí)中,數(shù)形結(jié)合的思想更是貫穿始終.
二、研究的目的和意義
數(shù)是形的抽象概括,形是數(shù)的直觀表現(xiàn).華羅庚教授說(shuō):“數(shù)缺形時(shí)少直覺(jué),形少數(shù)時(shí)難入微.數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事非.”數(shù)形結(jié)合就是充分運(yùn)用數(shù)的嚴(yán)謹(jǐn)和形的直觀,將抽象的數(shù)學(xué)語(yǔ)言與直觀的圖形語(yǔ)言結(jié)合起來(lái),使抽象思維和形象思維結(jié)合,通過(guò)圖形的描述、代數(shù)的論證來(lái)研究和解決數(shù)學(xué)問(wèn)題的一種數(shù)學(xué)思想方法.數(shù)形結(jié)合的思想,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語(yǔ)言與直觀的圖像結(jié)合起來(lái),關(guān)鍵是代數(shù)問(wèn)題與圖形之間的相互轉(zhuǎn)化,它可以使代數(shù)問(wèn)題幾何化,幾何問(wèn)題代數(shù)化.
數(shù)形結(jié)合思想方法是中學(xué)數(shù)學(xué)基礎(chǔ)知識(shí)的精髓之一,是把許多知識(shí)轉(zhuǎn)化為能力的“橋”.在高中數(shù)學(xué)教學(xué)中,許多抽象問(wèn)題學(xué)生往往覺(jué)得難以理解,如果教師能靈活地引導(dǎo)學(xué)生進(jìn)行數(shù)形結(jié)合,轉(zhuǎn)化為直觀、易感知的問(wèn)題,學(xué)生就易理解,就能把問(wèn)題解決,從而獲得成功的體驗(yàn),增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的信心.尤其是對(duì)于較難問(wèn)題,學(xué)生若能獨(dú)立解決或在老師的啟發(fā)和引導(dǎo)下把問(wèn)題解決,心情更是愉悅,這樣,就容易激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情、興趣和積極性.同時(shí),學(xué)生一旦掌握了數(shù)形結(jié)合法,并不斷進(jìn)行嘗試、運(yùn)用,許多問(wèn)題就能迎刃而解.
三、數(shù)形結(jié)合在提高學(xué)生解題能力中的作用
作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來(lái)闡明形的某些屬性,或者借助形的幾何直觀性來(lái)闡明數(shù)之間某種關(guān)系,即數(shù)形結(jié)合包括兩個(gè)方面:第一種情形是“以數(shù)解形”,而第二種情形是“以形助數(shù)”. 其中數(shù)形結(jié)合的重點(diǎn)是研究“以形助數(shù)”.
根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)意義,又揭示其幾何直觀,使數(shù)量關(guān)的精確刻劃與空間形式的直觀形象巧妙、和諧地結(jié)合在一起,充分利用這種數(shù)形結(jié)合,尋找解題思路,使問(wèn)題化難為易、化繁為簡(jiǎn),從而得到順利解決.
(一)“以形助數(shù)”
在運(yùn)用數(shù)形結(jié)合思想分析和解決問(wèn)題時(shí),要注意三點(diǎn):第一要徹底明白一些概念和運(yùn)算的幾何意義以及曲線的代數(shù)特征,對(duì)數(shù)學(xué)題目中的條件和結(jié)論既分析其幾何意義又分析其代數(shù)意義;第二是恰當(dāng)設(shè)參、合理用參,建立關(guān)系,由數(shù)思形,以形想數(shù),做好數(shù)形轉(zhuǎn)化;第三是正確確定參數(shù)的取值范圍.
四、數(shù)學(xué)教學(xué)中滲透數(shù)形結(jié)合思想
數(shù)形結(jié)合是高中數(shù)學(xué)新課程所滲透的重要思想方法之一.新教材中的內(nèi)容能很好地培養(yǎng)和發(fā)展學(xué)生的數(shù)形結(jié)合思想.教材中這一思想方法的滲透對(duì)發(fā)展學(xué)生的解題思路、尋找最佳解題方法有著指導(dǎo)性的作用,可對(duì)問(wèn)題進(jìn)行正確的分析、比較、合理聯(lián)想,逐步形成正確的解題觀,還可在學(xué)習(xí)中引導(dǎo)學(xué)生對(duì)抽象概念給予形象化的理解和記憶,提高數(shù)學(xué)認(rèn)知能力,并提升對(duì)現(xiàn)實(shí)世界的認(rèn)識(shí)能力,從而提高數(shù)學(xué)素養(yǎng),不斷完善自己.
新課標(biāo)的教學(xué)內(nèi)容早已全面實(shí)施,按新課標(biāo)的教學(xué)大綱要求與知識(shí)點(diǎn)傳授的層次性來(lái)看,數(shù)形結(jié)合法教學(xué)主要經(jīng)歷三個(gè)階段:
第一階段是數(shù)形對(duì)應(yīng),它是數(shù)形結(jié)合基礎(chǔ),主要是通過(guò)平時(shí)概念的教學(xué)逐步滲透,讓學(xué)生通過(guò)學(xué)習(xí)、訓(xùn)練、體會(huì)、逐步領(lǐng)悟和掌握.一方面,實(shí)數(shù)與數(shù)軸上的點(diǎn)的對(duì)應(yīng),平面上點(diǎn)與有序?qū)崝?shù)對(duì)間的對(duì)應(yīng),函數(shù)與圖象的對(duì)應(yīng),曲線與方程的對(duì)應(yīng)等,以及以幾何元素和幾何條件為背景建立起來(lái)的概念,如向量、三角函數(shù)等等都為數(shù)形結(jié)合創(chuàng)造了條件,提供了理論支撐.另一方面,高中數(shù)學(xué)概念具有較強(qiáng)的抽象性、概括性,學(xué)生在理解時(shí)有較大的難度.可以借助形的幾何直觀性來(lái)達(dá)到幫助學(xué)生理解的目的.例如,將函數(shù)與圖象結(jié)合起來(lái),用幾何方法表述函數(shù)關(guān)系來(lái)幫助學(xué)生理解函數(shù)的抽象.
第二階段是數(shù)形轉(zhuǎn)化,它體現(xiàn)了數(shù)與形關(guān)系在解決問(wèn)題過(guò)程中,如何作為一種方法而得到運(yùn)用.數(shù)學(xué)問(wèn)題是開展數(shù)學(xué)思維的前提,解決問(wèn)題的過(guò)程,本質(zhì)上就是一個(gè)思維訓(xùn)練的過(guò)程.我們可以將數(shù)形結(jié)合滲透在問(wèn)題的解決過(guò)程中,主要體現(xiàn)在以下三個(gè)方面:
(1)以形助數(shù)體會(huì)形在問(wèn)題解決中的直觀性 ;
(2)以數(shù)助形體會(huì)數(shù)的論證在問(wèn)題解決中的簡(jiǎn)潔性;
(3)數(shù)形結(jié)合體會(huì)兩者的統(tǒng)一性 .
第三階段是數(shù)形分工,這是把應(yīng)用數(shù)形結(jié)合思想作為解決問(wèn)題中的一種策略.例如,高三復(fù)習(xí)中重點(diǎn)開設(shè)數(shù)形結(jié)合思想方法專題,以達(dá)到系統(tǒng)鞏固的目的.
縱觀多年來(lái)的高考試題,巧妙運(yùn)用數(shù)形結(jié)合的思想方法解決一些抽象的數(shù)學(xué)問(wèn)題,往往事半功倍.因此,高中數(shù)學(xué)教學(xué)中必須加強(qiáng)數(shù)形結(jié)合,提高學(xué)生數(shù)學(xué)素質(zhì)與解題能力.