不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>論文大全>畢業(yè)論文>哲學(xué)論文>邏輯學(xué)>

論極限思想的辯證思考

時(shí)間: 若木633 分享

  微積分是研究客觀世界運(yùn)動現(xiàn)象的一門學(xué)科,我們引入極限概念對客觀世界運(yùn)動過程加以描述, 用極限方法建立其數(shù)量關(guān)系并研究其運(yùn)動結(jié)果[1]。極限理論是微積分學(xué)的基礎(chǔ)理論,貫穿整個(gè)微積分學(xué)。要學(xué)好微積分,必須認(rèn)識和理解極限理論,而把握極限理論的前提,首先要認(rèn)識極限思想。極限思想蘊(yùn)涵著豐富的辯證思想,是變與不變、過程與結(jié)果、有限與無限、近似與精確、量變與質(zhì)變以及否定與肯定的對立統(tǒng)一。

  1. 極限思想與辯證哲學(xué)的聯(lián)系

  1.1 極限思想是有限與無限的對立統(tǒng)一

  在辨證法中,有限與極限是對立統(tǒng)一的。無限與有限有本質(zhì)的不同, 但二者又有聯(lián)系, 無限是有限的發(fā)展,同時(shí)借助極限法,從有限認(rèn)識無限[2]。例如,在極限式lim n→∞ xn=a 中xn對應(yīng)數(shù)列中的每一項(xiàng), 這些不同的數(shù)值xn既有相對靜止性,又有絕對的運(yùn)動性。數(shù)列中的每一項(xiàng)xn和a 都是確定不變的量, 是有限數(shù); 隨著n無限增大,有限數(shù)xn向a 無限接進(jìn),正是這些有限數(shù)xn的無限變化,體現(xiàn)了無限運(yùn)動的變化過程,這種無限運(yùn)動變化結(jié)果是數(shù)值。因此在極限思想中無限是有限的發(fā)展,有限是無限的結(jié)果,他們既是對立又是統(tǒng)一的。

  1.2 極限思想是近似與精確的對立統(tǒng)一

  近似與精確是對立統(tǒng)一的關(guān)系, 在一定條件下可相互轉(zhuǎn)化, 這種轉(zhuǎn)化是理解數(shù)學(xué)運(yùn)算的重要方法[2]。

  在極限抽象的概念中,引入實(shí)例如“圓內(nèi)接正多邊形面積”,其內(nèi)結(jié)多邊形面積是該圓面積的近似值,當(dāng)多邊形的邊數(shù)無限增大時(shí), 內(nèi)結(jié)多變形面積無限接近圓面積,取極限后就可得到圓面積的精確值,這就是借助極限法,從近似認(rèn)識精確。又如在極限式lim n→∞ xn=a 中,當(dāng)n無限增大時(shí),數(shù)列的項(xiàng)x1,x2,…,xn反映變量xn無限的變化過程,而a 反映了變量xn無限變化的結(jié)果,每個(gè)xn都是a 的近似值,并且當(dāng)n 越大,精確度越高;當(dāng)n 趨于無窮時(shí),近似值xn轉(zhuǎn)化為精確值a。雖然近似與精確是兩個(gè)性質(zhì)不同、完全對立的概念,但是通過極限法,建立兩者之間的聯(lián)系,在一定條件下可以相互轉(zhuǎn)化。因此近似與精確既是對立又是統(tǒng)一的。

  1.3 極限思想是變與不變的對立統(tǒng)一

  “變”與“不變”反映了客觀事物運(yùn)動變化與相對靜止兩種不同狀態(tài),不變是相對的,變是絕對的,但它們在一定條件下又可相互轉(zhuǎn)化。例如,平面內(nèi)一條曲線C上某一點(diǎn)P 的切線斜率為kp。除P 點(diǎn)外曲線上點(diǎn)的斜率k 是變量,kp是不變量,曲線上不同的點(diǎn)對應(yīng)不同的斜率K,斜率k 不可能等于kp,k 與kp是變與不變的對立關(guān)系;同時(shí),它們之間也體現(xiàn)了一種相互聯(lián)系相互依賴的關(guān)系。當(dāng)曲線上的點(diǎn)無限接近P 點(diǎn)過程中,斜率k無限接近kp,變化的量向不變的量逐漸接近。當(dāng)無限接近的結(jié)果產(chǎn)生質(zhì)的飛躍時(shí),變量轉(zhuǎn)化為不變量,即“變”而“不變”,這體現(xiàn)了變與不變的統(tǒng)一關(guān)系。

  1.4 極限思想是過程與結(jié)果的對立統(tǒng)一

  過程和結(jié)果在哲學(xué)上是辯證統(tǒng)一的關(guān)系, 在極限思想中也充分體現(xiàn)了結(jié)果與過程的對立統(tǒng)一。在上例中,當(dāng)曲線上的點(diǎn)無限接近點(diǎn)P 的變化過程中,k 是變化過程,kp是變化結(jié)果。一方面,無論曲線上點(diǎn)多么接近點(diǎn)P,都不能與點(diǎn)P 重合,同樣曲線上變化點(diǎn)的斜率k 也不等于kp,這體現(xiàn)了過程與結(jié)果的對立性;另一方面,隨著無限接近過程的進(jìn)行,斜率k 越來越接近kp,二者之間有緊密的聯(lián)系, 無限接近的變化結(jié)果使得斜率k 轉(zhuǎn)化為kp,這體現(xiàn)了過程與結(jié)果的統(tǒng)一性。所以,通過研究曲線上點(diǎn)斜率k 的變化過程得到P 點(diǎn)的斜率kp就是過程與結(jié)果的對立統(tǒng)一。

  1.5 極限思想是量變與質(zhì)變的對立統(tǒng)一

  在唯物辨證法中, 任何事物都具有質(zhì)和量兩個(gè)方面,都是質(zhì)和量的統(tǒng)一體。質(zhì)是指事物成為它自身并區(qū)別于其他事物的內(nèi)在規(guī)定性,量是指事物存在的規(guī)模、發(fā)展程度和速度, 以及它的構(gòu)成成分在空間上的排列組合等可以用數(shù)量來表示的規(guī)定性[3]。量變和質(zhì)變既有區(qū)別又有聯(lián)系,兩者之間有著辯證關(guān)系。量變是質(zhì)變的準(zhǔn)備, 量的變化達(dá)到一定的度, 就不可避免地引起質(zhì)變,只有質(zhì)的變化才是事物根本性質(zhì)的變化,量變質(zhì)變規(guī)律在數(shù)學(xué)研究工作中起重要作用[4]。對任何一個(gè)單位圓的內(nèi)接正多邊形,事物的質(zhì)是圓的內(nèi)接多邊形,量是內(nèi)接多邊形的邊數(shù),當(dāng)邊數(shù)無限增加,得到的仍是圓內(nèi)接正多邊形,是量變,不是質(zhì)變,量變體現(xiàn)事物發(fā)展的連續(xù)性, 在事物量變過程中, 保持事物本身質(zhì)的穩(wěn)定性。但當(dāng)邊數(shù)增加的無限過程中,由于量的動態(tài)變化,多邊形越來越接近圓,為質(zhì)變創(chuàng)造條件,多邊形面積就變轉(zhuǎn)化為圓面積,促進(jìn)量質(zhì)轉(zhuǎn)化,達(dá)到矛盾統(tǒng)一。

  1.6 極限思想是否定與肯定的對立統(tǒng)一

  任何事物的內(nèi)部都包含著肯定因素和否定因素,都是肯定方面和否定方面的對立統(tǒng)一。單位圓和它的內(nèi)接正多邊形分別是兩個(gè)事物的對立面, 內(nèi)接正多邊形是事物對自身的肯定,其中也包含著否定,這種內(nèi)在的否定因素是通過圓內(nèi)接正多邊形邊數(shù)的改變而體現(xiàn)的。隨著圓內(nèi)接正多邊形的邊數(shù)逐漸增加至無窮時(shí),內(nèi)接多邊形的面積轉(zhuǎn)化為該單位圓的面積, 促使該事物轉(zhuǎn)化為自己的對立面,由肯定達(dá)到自身的否定,這體現(xiàn)了否定與肯定的對立; 圓的內(nèi)接正多邊形和圓雖是兩個(gè)對立的事物,但是二者之間有緊密的聯(lián)系,圓內(nèi)接正多邊形的面積可以轉(zhuǎn)化為圓的面積, 而單位圓是通過逐步增加內(nèi)接正多邊形的邊數(shù)來實(shí)現(xiàn)的, 從而建立了這二者的聯(lián)系,體現(xiàn)了否定與肯定的統(tǒng)一。

  2. 極限思想與辨證哲學(xué)的研究意義

  在唯物辯證法中,客觀事物之間相互影響、相互制約和相互作用的關(guān)系無處不在,即使是性質(zhì)完全不同、矛盾對立的兩個(gè)事物, 也都有其相互聯(lián)系的一面。所以,在微積分的學(xué)習(xí)過程中,不容忽視唯物辯證法普遍聯(lián)系思想的滲透。辯證思維在數(shù)學(xué)思維中的滲透和理解,其實(shí)質(zhì)就是按照唯物辯證法的原則,在聯(lián)系和發(fā)展中把握認(rèn)識對象,在對立統(tǒng)一中認(rèn)識事物。通過上述分析,極限思想貫穿唯物辨證哲學(xué)的范疇,它揭示了變與不變、過程與結(jié)果、有限與無限、近似與精確、量變與質(zhì)變的對立統(tǒng)一[4]。我們在理解極限思想時(shí)必須把單一、封閉、靜態(tài)的形式邏輯思維提高到多維、開放、動靜態(tài)相結(jié)合的辯證邏輯思維。數(shù)學(xué)思維與哲學(xué)思想的融合是學(xué)好數(shù)學(xué)的高層次要求, 領(lǐng)悟數(shù)學(xué)思維中的哲學(xué)思想和在哲學(xué)思想的指導(dǎo)下進(jìn)行數(shù)學(xué)思維, 是提高學(xué)生數(shù)學(xué)素養(yǎng)、理解數(shù)學(xué)知識,培養(yǎng)學(xué)生數(shù)學(xué)能力的重要方法和手段

論極限思想的辯證思考

微積分是研究客觀世界運(yùn)動現(xiàn)象的一門學(xué)科,我們引入極限概念對客觀世界運(yùn)動過程加以描述, 用極限方法建立其數(shù)量關(guān)系并研究其運(yùn)動結(jié)果[1]。極限理論是微積分學(xué)的基礎(chǔ)理論,貫穿整個(gè)微積分學(xué)。要學(xué)好微積分,必須認(rèn)識和理解極限理論,而
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
68339