數(shù)學(xué)建模全國(guó)優(yōu)秀論文范文
隨著科學(xué)技術(shù)特別是信息技術(shù)的高速發(fā)展,數(shù)學(xué)建模的應(yīng)用價(jià)值越來(lái)越得到眾人的重視,
數(shù)學(xué)建模全國(guó)優(yōu)秀論文1:《淺談數(shù)學(xué)建模教育的作用與開(kāi)展策略》
數(shù)學(xué)建模本身是一個(gè)創(chuàng)造性的思維過(guò)程,它是對(duì)數(shù)學(xué)知識(shí)的綜合應(yīng)用,具有較強(qiáng)的創(chuàng)新性,以下是一篇關(guān)于數(shù)學(xué)建模教育開(kāi)展策略探究的論文范文,歡迎閱讀參考。
大學(xué)數(shù)學(xué)具有高度抽象性和概括性等特點(diǎn),知識(shí)本身難度大再加上學(xué)時(shí)少、內(nèi)容多等教學(xué)現(xiàn)狀常常造成學(xué)生的學(xué)習(xí)積極性不高、知識(shí)掌握不夠透徹、遇到實(shí)際問(wèn)題時(shí)束手無(wú)策,而數(shù)學(xué)建模思想能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),提高其解決實(shí)際問(wèn)題的能力。數(shù)學(xué)建模活動(dòng)為學(xué)生構(gòu)建了一個(gè)由數(shù)學(xué)知識(shí)通向?qū)嶋H問(wèn)題的橋梁,是學(xué)生的數(shù)學(xué)知識(shí)和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學(xué)數(shù)學(xué)教育中應(yīng)加強(qiáng)數(shù)學(xué)建模教育和活動(dòng),讓學(xué)生積極主動(dòng)學(xué)習(xí)建模思想,認(rèn)真體驗(yàn)和感知建模過(guò)程,以此啟迪創(chuàng)新意識(shí)和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實(shí)現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
一、數(shù)學(xué)建模的含義及特點(diǎn)
數(shù)學(xué)建模即抓住問(wèn)題的本質(zhì),抽取影響研究對(duì)象的主因素,將其轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)思維、數(shù)學(xué)邏輯進(jìn)行分析,借助于數(shù)學(xué)方法及相關(guān)工具進(jìn)行計(jì)算,最后將所得的答案回歸實(shí)際問(wèn)題,即模型的檢驗(yàn),這就是數(shù)學(xué)建模的全過(guò)程。一般來(lái)說(shuō)",數(shù)學(xué)建模"包含五個(gè)階段。
1.準(zhǔn)備階段
主要分析問(wèn)題背景,已知條件,建模目的等問(wèn)題。
2.假設(shè)階段
做出科學(xué)合理的假設(shè),既能簡(jiǎn)化問(wèn)題,又能抓住問(wèn)題的本質(zhì)。
3.建立階段
從眾多影響研究對(duì)象的因素中適當(dāng)?shù)厝∩幔槿≈饕蛩赜枰钥紤],建立能刻畫(huà)實(shí)際問(wèn)題本質(zhì)的數(shù)學(xué)模型。
4.求解階段
對(duì)已建立的數(shù)學(xué)模型,運(yùn)用數(shù)學(xué)方法、數(shù)學(xué)軟件及相關(guān)的工具進(jìn)行求解。
5.驗(yàn)證階段
用實(shí)際數(shù)據(jù)檢驗(yàn)?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實(shí)。如果建立的模型經(jīng)得起實(shí)踐的檢驗(yàn),那么此模型就是符合實(shí)際規(guī)律的,能解決實(shí)際問(wèn)題或有效預(yù)測(cè)未來(lái)的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。
二、加強(qiáng)數(shù)學(xué)建模教育的作用和意義
(一) 加強(qiáng)數(shù)學(xué)建模教育有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高數(shù)學(xué)修養(yǎng)和素質(zhì)
數(shù)學(xué)建模教育強(qiáng)調(diào)如何把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)而利用數(shù)學(xué)及其有關(guān)的工具解決這些問(wèn)題, 因此在大學(xué)數(shù)學(xué)的教學(xué)活動(dòng)中融入數(shù)學(xué)建模思想,鼓勵(lì)學(xué)生參與數(shù)學(xué)建模實(shí)踐活動(dòng),不但可以使學(xué)生學(xué)以致用,做到理論聯(lián)系實(shí)際,而且還會(huì)使他們感受到數(shù)學(xué)的生機(jī)與活力,激發(fā)求知的興趣和探索的欲望,變被動(dòng)學(xué)習(xí)為主動(dòng)參與其效率就會(huì)大為改善。數(shù)學(xué)修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
(二)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生的分析解決問(wèn)題能力、綜合應(yīng)用能力
數(shù)學(xué)建模問(wèn)題來(lái)源于社會(huì)生活的眾多領(lǐng)域,在建模過(guò)程中,學(xué)生首先需要閱讀相關(guān)的文獻(xiàn)資料,然后應(yīng)用數(shù)學(xué)思維、數(shù)學(xué)邏輯及相關(guān)知識(shí)對(duì)實(shí)際問(wèn)題進(jìn)行深入剖析研究并經(jīng)過(guò)一系列復(fù)雜計(jì)算,得出反映實(shí)際問(wèn)題的最佳數(shù)學(xué)模型及模型最優(yōu)解。因此通過(guò)數(shù)學(xué)建模活動(dòng)學(xué)生的視野將會(huì)得以拓寬,應(yīng)用意識(shí)、解決復(fù)雜問(wèn)題的能力也會(huì)得到增強(qiáng)和提高。
(三)加強(qiáng)數(shù)學(xué)建模教育有助于培養(yǎng)學(xué)生的創(chuàng)造性思維和創(chuàng)新能力
所謂創(chuàng)造力是指"對(duì)已積累的知識(shí)和經(jīng)驗(yàn)進(jìn)行科學(xué)地加工和創(chuàng)造,產(chǎn)生新概念、新知識(shí)、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成"[1].現(xiàn)今教育界認(rèn)為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學(xué)建?;顒?dòng)的各個(gè)環(huán)節(jié)無(wú)不充滿(mǎn)了創(chuàng)造性思維的挑戰(zhàn)。
很多不同的實(shí)際問(wèn)題,其數(shù)學(xué)模型可以是相同或相似的,這就要求學(xué)生在建模時(shí)觸類(lèi)旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對(duì)一個(gè)具體的建模問(wèn)題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,是完成建模過(guò)程的關(guān)鍵所在。同時(shí)建模題材有較大的靈活性,沒(méi)有統(tǒng)一的標(biāo)準(zhǔn)答案,因此數(shù)學(xué)建模過(guò)程是培養(yǎng)學(xué)生創(chuàng)造性思維,提高創(chuàng)新能力的過(guò)程[2].
(四)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生科技論文的撰寫(xiě)能力
數(shù)學(xué)建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來(lái),對(duì)本科生來(lái)說(shuō)是一個(gè)挑戰(zhàn)。經(jīng)歷數(shù)學(xué)建模全過(guò)程的磨練,特別是數(shù)模論文的撰寫(xiě),學(xué)生的文字語(yǔ)言、數(shù)學(xué)表述能力及論文的撰寫(xiě)能力無(wú)疑會(huì)得到前所未有的提高。
(五)加強(qiáng)數(shù)學(xué)建模教育有助于增強(qiáng)學(xué)生的團(tuán)結(jié)合作精神并提高協(xié)調(diào)組織能力建模問(wèn)題通常較復(fù)雜,涉及的知識(shí)面也很廣,因此數(shù)學(xué)建模實(shí)踐活動(dòng)一般效仿正規(guī)競(jìng)賽的規(guī)則,三人為一隊(duì)在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開(kāi)良好的組織與管理、分工與協(xié)作[3].
三、開(kāi)展數(shù)學(xué)建模教育及活動(dòng)的具體途徑和有效方法
(一)開(kāi)展數(shù)學(xué)建模課堂教學(xué)
即在課堂教學(xué)中,教師以具體的案例作為主要的教學(xué)內(nèi)容,通過(guò)具體問(wèn)題的建模,介紹建模的過(guò)程和思想方法及建模中要注意的問(wèn)題。案例教學(xué)法的關(guān)鍵在于把握兩個(gè)重要環(huán)節(jié):
案例的選取和課堂教學(xué)的組織。
教學(xué)案例一定要精心選取,才能達(dá)到預(yù)期的教學(xué)效果。其選取一般要遵循以下幾點(diǎn)。
1. 代表性:案例的選取要具有科學(xué)性,能拓寬學(xué)生的知識(shí)面,突出數(shù)學(xué)建模活動(dòng)重在培養(yǎng)興趣提高能力等特點(diǎn)。
2. 原始性:來(lái)自媒體的信息,企事業(yè)單位的報(bào)告,現(xiàn)實(shí)生活和各學(xué)科中的問(wèn)題等等,都是數(shù)學(xué)建模問(wèn)題原始資料的重要來(lái)源。
3. 創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學(xué)生的創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神和提高創(chuàng)造能力。
案例教學(xué)的課堂組織,一部分是教師講授,從實(shí)際問(wèn)題出發(fā),講清問(wèn)題的背景、建模的要求和已掌握的信息,介紹如何通過(guò)合理的假設(shè)和簡(jiǎn)化建立優(yōu)化的數(shù)學(xué)模型。還要強(qiáng)調(diào)如何用求解結(jié)果去解釋實(shí)際現(xiàn)象即檢驗(yàn)?zāi)P汀A硪徊糠质钦n堂討論,讓學(xué)生自由發(fā)言各抒己見(jiàn)并提出新的模型,簡(jiǎn)介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點(diǎn)評(píng),提供一些改進(jìn)的方向,讓學(xué)生自己課外獨(dú)立探索和鉆研,這樣既突出了教學(xué)重點(diǎn),又給學(xué)生留下了進(jìn)一步思考的空間,既避免了教師的"滿(mǎn)堂灌",也活躍了課堂氣氛,提高了學(xué)生的課堂學(xué)習(xí)興趣和積極性,使傳授知識(shí)變?yōu)閷W(xué)習(xí)知識(shí)、應(yīng)用知識(shí),真正地達(dá)到提高素質(zhì)和培養(yǎng)能力的教學(xué)目的[4].
(二)開(kāi)展數(shù)模競(jìng)賽的專(zhuān)題培訓(xùn)指導(dǎo)工作
建立數(shù)學(xué)建模競(jìng)賽指導(dǎo)團(tuán)隊(duì),分專(zhuān)題實(shí)行教師負(fù)責(zé)制。每位教師根據(jù)自己的專(zhuān)長(zhǎng),負(fù)責(zé)講授某一方面的數(shù)學(xué)建模知識(shí)與技巧,并選取相應(yīng)地建模案例進(jìn)行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計(jì)回歸模型及數(shù)學(xué)軟件的使用等。學(xué)生根據(jù)自己的薄弱點(diǎn),選擇適合的專(zhuān)題培訓(xùn)班進(jìn)行學(xué)習(xí),以彌補(bǔ)自己的不足。這種針對(duì)性的數(shù)模教學(xué),會(huì)極大地提高教學(xué)效率。
(三)建立數(shù)學(xué)建模網(wǎng)絡(luò)課程
以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學(xué)建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學(xué)實(shí)驗(yàn),教學(xué)錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國(guó)內(nèi)外數(shù)模競(jìng)賽介紹,校內(nèi)競(jìng)賽,專(zhuān)家點(diǎn)評(píng),獲獎(jiǎng)心得交流;同時(shí)提供數(shù)模學(xué)習(xí)資源下載如講義,背景材料,歷年國(guó)內(nèi)外競(jìng)賽題,優(yōu)秀論文等。以此為學(xué)生提供良好的自主學(xué)習(xí)網(wǎng)絡(luò)平臺(tái),實(shí)現(xiàn)課堂教學(xué)與網(wǎng)絡(luò)教學(xué)的有機(jī)結(jié)合,達(dá)到有效地提高學(xué)生數(shù)學(xué)建模綜合應(yīng)用能力的目的。[5,6]
(四)開(kāi)展校內(nèi)數(shù)學(xué)建模競(jìng)賽活動(dòng)
完全模擬全國(guó)大學(xué)生數(shù)模競(jìng)賽的形式規(guī)則:定時(shí)公布賽題,三人一組,只能隊(duì)內(nèi)討論,按時(shí)提交論文,之后指導(dǎo)教師、參賽同學(xué)集中討論,進(jìn)一步完善。筆者負(fù)責(zé)數(shù)學(xué)建模競(jìng)賽培訓(xùn)近 20 年,多年的實(shí)踐證明,每進(jìn)行一次這樣的訓(xùn)練,學(xué)生在建模思路、建模水平、使用軟件能力、論文書(shū)寫(xiě)方面就有大幅提高。多次訓(xùn)練之后,學(xué)生的建模水平更是突飛猛進(jìn),效果甚佳。
如 2008 年我指導(dǎo)的隊(duì)榮獲全國(guó)高教社杯大學(xué)生數(shù)學(xué)建模競(jìng)賽的最高獎(jiǎng)---高教社杯獎(jiǎng),這是此賽設(shè)置的唯一一個(gè)名額,也是當(dāng)年從全國(guó)(包括香港)院校的約 1 萬(wàn)多個(gè)本科參賽隊(duì)中脫穎而出的。又如 2014 年我校 57 隊(duì)參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,43 隊(duì)獲獎(jiǎng),獲獎(jiǎng)比例達(dá) 75%,創(chuàng)歷年之最。
(五)鼓勵(lì)學(xué)生積極參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽、國(guó)際數(shù)學(xué)建模競(jìng)賽
全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽創(chuàng)辦于 1992 年,每年一屆,目前已成為全國(guó)高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽, 國(guó)際大學(xué)生數(shù)學(xué)建模競(jìng)賽是世界上影響范圍最大的高水平大學(xué)生學(xué)術(shù)賽事。參加數(shù)學(xué)建模大賽可以激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高運(yùn)用數(shù)學(xué)及相關(guān)工具分析問(wèn)題解決問(wèn)題的綜合能力,開(kāi)拓知識(shí)面,培養(yǎng)創(chuàng)造精神及合作意識(shí)。
四、結(jié)束語(yǔ)
數(shù)學(xué)建模本身是一個(gè)創(chuàng)造性的思維過(guò)程,它是對(duì)數(shù)學(xué)知識(shí)的綜合應(yīng)用,具有較強(qiáng)的創(chuàng)新性,而高校數(shù)學(xué)教學(xué)改革的目的之一是要著力培養(yǎng)學(xué)生的創(chuàng)造性思維,提高學(xué)生的創(chuàng)新能力。因此應(yīng)將數(shù)學(xué)建模思想融入教學(xué)活動(dòng)中,通過(guò)不斷的數(shù)學(xué)建模教育和實(shí)踐培養(yǎng)學(xué)生的創(chuàng)新能力和應(yīng)用能力從而提高學(xué)生的基本素質(zhì)以適應(yīng)社會(huì)發(fā)展的要求。
參考文獻(xiàn):
[1]辭海[M].上海辭書(shū)出版社,2002,1:237.
[2]許梅生,章迪平,張少林。 數(shù)學(xué)建模的認(rèn)識(shí)與實(shí)踐[J].浙江科技學(xué)院學(xué)報(bào),2003,15(1):40-42.
[3]姜啟源,謝金星,一項(xiàng)成功的高等教育改革實(shí)踐[J].中國(guó)高教研究,2011,12:79-83.
[4]饒從軍,王成。論高校數(shù)學(xué)建模教學(xué)[J].延邊大學(xué)學(xué)報(bào)(自然科學(xué)學(xué)版),2006,32(3):227-230.
[5]段璐靈。數(shù)學(xué)建模課程教學(xué)改革初探[J].教育與職業(yè),2013,5:140-142.
[6]郝鵬鵬。工程網(wǎng)絡(luò)課程教學(xué)的實(shí)踐與思考[J]科技視界,2014,29:76-77.
數(shù)學(xué)建模全國(guó)優(yōu)秀論文2:《試論小學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的運(yùn)用》
大部分?jǐn)?shù)學(xué)知識(shí)是抽象的,概念比較枯燥,造成學(xué)生學(xué)習(xí)困難,而數(shù)學(xué)建模的運(yùn)用,在很大程度上可以將抽象的數(shù)學(xué)知識(shí)轉(zhuǎn)化成實(shí)體模型,讓學(xué)生更容易理解和學(xué)習(xí)數(shù)學(xué)知識(shí)。教師要做的就是了解并掌握數(shù)學(xué)建模的方法,并且把這種教學(xué)方法運(yùn)用到數(shù)學(xué)教學(xué)中。
對(duì)教師來(lái)說(shuō),發(fā)現(xiàn)好的教學(xué)方法不是最重要的,而是如何把方法與教學(xué)結(jié)合起來(lái)。通過(guò)對(duì)數(shù)學(xué)建模的長(zhǎng)期研究和實(shí)踐應(yīng)用,筆者總結(jié)了數(shù)學(xué)建模的概念以及運(yùn)用策略。
一、數(shù)學(xué)建模的概念
想要更好地運(yùn)用數(shù)學(xué)建模,首先要了解什么是數(shù)學(xué)建模??梢哉f(shuō),數(shù)學(xué)建模就像一面鏡子,可以使數(shù)學(xué)抽象的影像產(chǎn)生與之對(duì)應(yīng)的具體化物象。
二、在小學(xué)數(shù)學(xué)教學(xué)中運(yùn)用數(shù)學(xué)建模的策略
1.根據(jù)事物之間的共性進(jìn)行數(shù)學(xué)建模
想要運(yùn)用數(shù)學(xué)建模,首先要對(duì)建模對(duì)象有一定的感知。教師要?jiǎng)?chuàng)造有利的條件,促使學(xué)生感知不同事物之間的共性,然后進(jìn)行數(shù)學(xué)建模。
教師應(yīng)做好建模前的指導(dǎo)工作,為學(xué)生的數(shù)學(xué)建模做好鋪墊,而學(xué)生要學(xué)會(huì)嘗試自己去發(fā)現(xiàn)事物的共性,爭(zhēng)取將事物的共性完美地運(yùn)用到數(shù)學(xué)建模中。在建模過(guò)程中,教師要引導(dǎo)學(xué)生把新知識(shí)和舊知識(shí)結(jié)合起來(lái)的作用,將原來(lái)學(xué)習(xí)中發(fā)現(xiàn)的好方法運(yùn)用到新知識(shí)的學(xué)習(xí)、新數(shù)學(xué)模型的構(gòu)建中,降低新的數(shù)學(xué)建模的難度,提高學(xué)生數(shù)學(xué)建模的成功率。如在教學(xué)《圖形面積》時(shí),教師可以利用不同的圖形模板,讓學(xué)生了解不同圖形的面積構(gòu)成,尋找不同圖形面積的差異以及圖形之間的共性。這樣直觀地向?qū)W生展示圖形的變化,可以加深學(xué)生對(duì)知識(shí)的理解,提高學(xué)生的學(xué)習(xí)效率。
2.認(rèn)識(shí)建模思想的本質(zhì)
建模思想與數(shù)學(xué)的本質(zhì)緊密相連,它不是獨(dú)立存在于數(shù)學(xué)教學(xué)之外的。所以在數(shù)學(xué)建模過(guò)程中,教師要幫助學(xué)生正確認(rèn)識(shí)數(shù)學(xué)建模的本質(zhì),將數(shù)學(xué)建模與數(shù)學(xué)教學(xué)有機(jī)結(jié)合起來(lái),提高學(xué)生解決問(wèn)題的能力,讓學(xué)生真正具備使用數(shù)學(xué)建模的能力。
建模過(guò)程并不是獨(dú)立于數(shù)學(xué)教學(xué)之外的,它和數(shù)學(xué)的教學(xué)過(guò)程緊密相連。數(shù)學(xué)建模是使人對(duì)數(shù)學(xué)抽象化知識(shí)進(jìn)行具體認(rèn)識(shí)的工具,是運(yùn)用數(shù)學(xué)建模思想解決數(shù)學(xué)難題的過(guò)程。因此,教師要將它和數(shù)學(xué)教學(xué)組成一個(gè)有機(jī)的整體,不僅要幫助學(xué)生完成建模,更要帶領(lǐng)學(xué)生認(rèn)識(shí)數(shù)學(xué)建模的本質(zhì),領(lǐng)悟數(shù)學(xué)建模思想的真諦,并逐漸引導(dǎo)學(xué)生使用數(shù)學(xué)建模解決數(shù)學(xué)學(xué)習(xí)過(guò)程中遇到的問(wèn)題。
3.發(fā)揮教材在數(shù)學(xué)建模上的作用
教材是最基礎(chǔ)的教學(xué)工具,在數(shù)學(xué)教材中有很多典型案例可以利用在數(shù)學(xué)建模上,其中很大一部分來(lái)源于生活,更易于小學(xué)生學(xué)習(xí)和理解,有助于學(xué)生構(gòu)建數(shù)學(xué)建模思想。教師要利用好教材,培養(yǎng)學(xué)生的建模能力,幫助學(xué)生建造更易于理解的數(shù)學(xué)模型,從而提高學(xué)生的學(xué)習(xí)效率。如在教學(xué)加減法時(shí),教材上會(huì)有很多數(shù)蘋(píng)果、香蕉的例題,這些就是很好的數(shù)學(xué)模型,因?yàn)橘N近生活,可以激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生數(shù)學(xué)建模的能力,所以教師應(yīng)該深入研究教材。
數(shù)學(xué)建模是一種很好的數(shù)學(xué)教學(xué)方法,教師要充分利用這種教學(xué)方法,真正做到實(shí)踐與理論完美結(jié)合。
數(shù)學(xué)建模的常見(jiàn)方法
1、層次分析法,簡(jiǎn)稱(chēng)AHP,是指將與決策總是有關(guān)的元素分解成目標(biāo)、準(zhǔn)則、方案等層次,在此基礎(chǔ)之上進(jìn)行定性和定量分析的決策方法。該方法是美國(guó)運(yùn)籌學(xué)家匹茨堡大學(xué)教授薩蒂于20世紀(jì)70年代初,在為美國(guó)國(guó)防部研究"根據(jù)各個(gè)工業(yè)部門(mén)對(duì)國(guó)家福利的貢獻(xiàn)大小而進(jìn)行電力分配"課題時(shí),應(yīng)用網(wǎng)絡(luò)系統(tǒng)理論和多目標(biāo)綜合評(píng)價(jià)方法,提出的一種層次權(quán)重決策分析方法。
2、多屬性決策是現(xiàn)代決策科學(xué)的一個(gè)重要組成部分,它的理論和方法在工程設(shè)計(jì)、經(jīng)濟(jì)、管理和軍事等諸多領(lǐng)域中有著廣泛的應(yīng)用,如:投資決策、項(xiàng)目評(píng)估、維修服務(wù)、武器系統(tǒng)性能評(píng)定、工廠(chǎng)選址、投標(biāo)招標(biāo)、產(chǎn)業(yè)部門(mén)發(fā)展排序和經(jīng)濟(jì)效益綜合評(píng)價(jià)等.多屬性決策的實(shí)質(zhì)是利用已有的決策信息通過(guò)一定的方式對(duì)一組(有限個(gè))備選方案進(jìn)行排序或擇優(yōu).它主要由兩部分組成:(l) 獲取決策信息.決策信息一般包括兩個(gè)方面的內(nèi)容:屬性權(quán)重和屬性值(屬性值主要有三種形式:實(shí)數(shù)、區(qū)間數(shù)和語(yǔ)言).其中,屬性權(quán)重的確定是多屬性決策中的一個(gè)重要研究?jī)?nèi)容;(2)通過(guò)一定的方式對(duì)決策信息進(jìn)行集結(jié)并對(duì)方案進(jìn)行排序和擇優(yōu)。
3、灰色預(yù)測(cè)模型(Gray Forecast Model)是通過(guò)少量的、不完全的信息,建立數(shù)學(xué)模型并做出預(yù)測(cè)的一種預(yù)測(cè)方法.當(dāng)我們應(yīng)用運(yùn)籌學(xué)的思想方法解決實(shí)際問(wèn)題,制定發(fā)展戰(zhàn)略和政策、進(jìn)行重大問(wèn)題的決策時(shí),都必須對(duì)未來(lái)進(jìn)行科學(xué)的預(yù)測(cè).預(yù)測(cè)是根據(jù)客觀事物的過(guò)去和現(xiàn)在的發(fā)展規(guī)律,借助于科學(xué)的方法對(duì)其未來(lái)的發(fā)展趨勢(shì)和狀況進(jìn)行描述和分析,并形成科學(xué)的假設(shè)和判斷。
4、Dijkstra算法能求一個(gè)頂點(diǎn)到另一頂點(diǎn)最短路徑。它是由Dijkstra于1959年提出的。實(shí)際它能出始點(diǎn)到其它所有頂點(diǎn)的最短路徑。
Dijkstra算法是一種標(biāo)號(hào)法:給賦權(quán)圖的每一個(gè)頂點(diǎn)記一個(gè)數(shù),稱(chēng)為頂點(diǎn)的標(biāo)號(hào)(臨時(shí)標(biāo)號(hào),稱(chēng)T標(biāo)號(hào),或者固定標(biāo)號(hào),稱(chēng)為P標(biāo)號(hào))。T標(biāo)號(hào)表示從始頂點(diǎn)到該標(biāo)點(diǎn)的最短路長(zhǎng)的上界;P標(biāo)號(hào)則是從始頂點(diǎn)到該頂點(diǎn)的最短路長(zhǎng)。
5、Floyd算法是一個(gè)經(jīng)典的動(dòng)態(tài)規(guī)劃算法。用通俗的語(yǔ)言來(lái)描述的話(huà),首先我們的目標(biāo)是尋找從點(diǎn)i到點(diǎn)j的最短路徑。從動(dòng)態(tài)規(guī)劃的角度看問(wèn)題,我們需要為這個(gè)目標(biāo)重新做一個(gè)詮釋(這個(gè)詮釋正是動(dòng)態(tài)規(guī)劃最富創(chuàng)造力的精華所在)從任意節(jié)點(diǎn)i到任意節(jié)點(diǎn)j的最短路徑不外乎2種可能,1是直接從i到j(luò),2是從i經(jīng)過(guò)若干個(gè)節(jié)點(diǎn)k到j(luò)。所以,我們假設(shè)Dis(i,j)為節(jié)點(diǎn)u到節(jié)點(diǎn)v的最短路徑的距離,對(duì)于每一個(gè)節(jié)點(diǎn)k,我們檢查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,證明從i到k再到j(luò)的路徑比i直接到j(luò)的路徑短,我們便設(shè)置Dis(i,j) = Dis(i,k) + Dis(k,j),這樣一來(lái),當(dāng)我們遍歷完所有節(jié)點(diǎn)k,Dis(i,j)中記錄的便是i到j(luò)的最短路徑的距離。
6、模擬退火算法是模仿自然界退火現(xiàn)象而得,利用了物理中固體物質(zhì)的退火過(guò)程與一般優(yōu)化問(wèn)題的相似性從某一初始溫度開(kāi)始,伴隨溫度的不斷下降,結(jié)合概率突跳特性在解空間中隨機(jī)尋找全局最優(yōu)解。
7、種群競(jìng)爭(zhēng)模型:當(dāng)兩個(gè)種群為爭(zhēng)奪同一食物來(lái)源和生存空間相互競(jìng)爭(zhēng)時(shí),常見(jiàn)的結(jié)局是,競(jìng)爭(zhēng)力弱的滅絕,競(jìng)爭(zhēng)力強(qiáng)的達(dá)到環(huán)境容許的最大容量。使用種群競(jìng)爭(zhēng)模型可以描述兩個(gè)種群相互競(jìng)爭(zhēng)的過(guò)程,分析產(chǎn)生各種結(jié)局的條件。
8、排隊(duì)論發(fā)源于上世紀(jì)初。當(dāng)時(shí)美國(guó)貝爾電話(huà)公司發(fā)明了自動(dòng)電話(huà),以適應(yīng)日益繁忙的工商業(yè)電話(huà)通訊需要。這個(gè)新發(fā)明帶來(lái)了一個(gè)新問(wèn)題,即通話(huà)線(xiàn)路與電話(huà)用戶(hù)呼叫的數(shù)量關(guān)系應(yīng)如何妥善解決,這個(gè)問(wèn)題久久未能解決。1909年,丹麥的哥本哈根電話(huà)公司A.K.埃爾浪(Erlang)在熱力學(xué)統(tǒng)計(jì)平衡概念的啟發(fā)下解決了這個(gè)問(wèn)題。
9、線(xiàn)性規(guī)劃是運(yùn)籌學(xué)中研究較早、發(fā)展較快、應(yīng)用廣泛、方法較成熟的一個(gè)重要分支,它是輔助人們進(jìn)行科學(xué)管理的一種數(shù)學(xué)方法.在經(jīng)濟(jì)管理、交通運(yùn)輸、工農(nóng)業(yè)生產(chǎn)等經(jīng)濟(jì)活動(dòng)中,提高經(jīng)濟(jì)效果是人們不可缺少的要求,而提高經(jīng)濟(jì)效果一般通過(guò)兩種途徑:一是技術(shù)方面的改進(jìn),例如改善生產(chǎn)工藝,使用新設(shè)備和新型原材料.二是生產(chǎn)組織與計(jì)劃的改進(jìn),即合理安排人力物力資源.線(xiàn)性規(guī)劃所研究的是:在一定條件下,合理安排人力物力等資源,使經(jīng)濟(jì)效果達(dá)到最好.一般地,求線(xiàn)性目標(biāo)函數(shù)在線(xiàn)性約束條件下的最大值或最小值的問(wèn)題,統(tǒng)稱(chēng)為線(xiàn)性規(guī)劃問(wèn)題。滿(mǎn)足線(xiàn)性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域。決策變量、約束條件、目標(biāo)函數(shù)是線(xiàn)性規(guī)劃的三要素。
10、非線(xiàn)性規(guī)劃:非線(xiàn)性規(guī)劃是一種求解目標(biāo)函數(shù)或約束條件中有一個(gè)或幾個(gè)非線(xiàn)性函數(shù)的最優(yōu)化問(wèn)題的方法。運(yùn)籌學(xué)的一個(gè)重要分支。20世紀(jì)50年代初,庫(kù)哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非線(xiàn)性規(guī)劃的基本定理,為非線(xiàn)性規(guī)劃奠定了理論基礎(chǔ)。這一方法在工業(yè)、交通運(yùn)輸、經(jīng)濟(jì)管理和軍事等方面有廣泛的應(yīng)用,特別是在“最優(yōu)設(shè)計(jì)”方面,它提供了數(shù)學(xué)基礎(chǔ)和計(jì)算方法,因此有重要的實(shí)用價(jià)值。
數(shù)學(xué)建模全國(guó)優(yōu)秀論文相關(guān)文章:
★ 數(shù)學(xué)建模全國(guó)優(yōu)秀論文范文
★ 2017年全國(guó)數(shù)學(xué)建模大賽獲獎(jiǎng)優(yōu)秀論文
★ 數(shù)學(xué)建模競(jìng)賽獲獎(jiǎng)?wù)撐姆段?/a>
★ 小學(xué)數(shù)學(xué)建模的優(yōu)秀論文范文
★ 學(xué)習(xí)數(shù)學(xué)建模心得體會(huì)3篇
★ 大學(xué)生數(shù)學(xué)建模論文范文(2)