不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高中勵志>

高一數(shù)學(xué)知識點(diǎn)總結(jié)大全(最新版)

時間: 淑娟4820 分享

要想學(xué)好數(shù)學(xué),大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數(shù)學(xué)成績。今天小編在這給大家整理了高一數(shù)學(xué)知識點(diǎn)總結(jié)大全(最新版),接下來隨著小編一起來看看吧!

高一數(shù)學(xué)知識點(diǎn)總結(jié)


目錄

高一數(shù)學(xué)知識點(diǎn)總結(jié)

怎樣讓數(shù)學(xué)成績提高

高考填報志愿的注意事項(xiàng)


高一數(shù)學(xué)知識點(diǎn)總結(jié)

第一章 三角函數(shù)

1.1任意角和弧度制

1.2任意角的三角函數(shù)——閱讀與思考 三角形與天文學(xué)

1.3三角函數(shù)的誘導(dǎo)公式

1.4三角函數(shù)的圖像與性質(zhì)——探究與發(fā)現(xiàn) 函數(shù)y=Asin(ωX+φ)及函數(shù)y=Acos(ωx+φ)的周期

探究與發(fā)現(xiàn) 利用單位圓中的三角函數(shù)線研究正弦函數(shù)、余弦函數(shù)的性質(zhì)

信息技術(shù)應(yīng)用 利用正切線畫函數(shù)

y=tanX,X∈(—2π,2π )的圖像

1.5函數(shù)y=Asin(ωX+φ)的圖像——閱讀與思考 振幅、周期、頻率、相位

1.6三角函數(shù)模型的簡單應(yīng)用

小結(jié)

復(fù)習(xí)參考題

第二章 平面向量

2.1平面向量的實(shí)際背景及基本概念——閱讀與思考 向量及向量符號的由來

2.2平面向量的線性運(yùn)算

2.3平面向量的基本定理及坐標(biāo)表示

2.4平面向量的數(shù)量積

2.5平面向量應(yīng)用舉例——閱讀與思考 向量的運(yùn)算(運(yùn)算律)與圖形性質(zhì)

小結(jié)

復(fù)習(xí)參考題

第三章 三角恒等變換

3.1兩角和與差的正弦、余弦和正切公式——信息技術(shù)應(yīng)用 利用信息技術(shù)制作三角函數(shù)表

3.2簡單的三角恒等變換

復(fù)習(xí)參考題

1.

正角:按逆時針方向旋轉(zhuǎn)形成的角叫做正角。

按邊旋轉(zhuǎn)的方向分零角:如果一條射線沒有作任何旋轉(zhuǎn),我們稱它形成了一個零角。角負(fù)角:按順時針方向旋轉(zhuǎn)形成的角叫做負(fù)角。

的第一象限角{α|k2360°<α<90°+k2360°,k∈Z}

分第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z}類第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z}第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z}或{α|-90°+k2360°<α<k2360°,k∈z}(象間角):當(dāng)角的終邊與坐標(biāo)軸重合時叫軸上角,它不屬于任何一個象限.2.終邊相同角的表示:所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個集合s={β|β=α+k2360°,k∈z}即任一與角α終邊相同的角,都可以表示成角α與整個周角的和。3.幾種特殊位置的角:< p="">

⑴終邊在x軸上的非負(fù)半軸上的角:α=k2360°,k∈Z

⑵終邊在x軸上的非正半軸上的角:α=180°+k2360°,k∈Z⑶終邊在x軸上的角:α=k2180°,k∈Z

⑷終邊在y軸上的角:α=90°+k2180°,k∈Z⑸終邊在坐標(biāo)軸上的角:α=k290°,k∈Z

⑹終邊在y=x上的角:α=45°+k2180°,k∈Z

⑺終邊在y=-x上的角:α=-45°+k2180°,k∈Z或α=135°+k2180°,k∈Z⑻終邊在坐標(biāo)軸或四象限角平分線上的角:α=k245°,k∈Z

4.弧度:在圓中,把長度等于半徑長的弧所對的圓心角叫做1弧度的角,用符號rad表示。5.6.如果半徑為r的圓的圓心角α所對弧的長為l,那么,角α相關(guān)公式7.角度制與弧度制的換算8.單位圓:在直角坐標(biāo)系中,我們稱以原點(diǎn)O為圓心,以單位長度為半徑的圓為單位圓。

9.利用單位圓定義任意角的三角函數(shù):設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,y)那么:⑴y叫做α的正弦,記作sinα即⑵x叫做α的余弦,記作cosα⑶

y叫做α的正切,記作tanαx22

10.sincos1sin;cos

同角三角函數(shù)的基本關(guān)系α≠kπ+

11.三角函數(shù)的誘導(dǎo)公式:

πnis(k∈Z)】:ant2cos

公sink2sin式cosk2cos一tank2tan【注】其中kZ

公sinsin公sinsin式cos

cos

式coscos

公sinsin式coscos四tantan

公sincos

2

公sinsco

2

式cossin式cosnsi

22

五tancot

2

六tantco

2

注意:ysinx周期為2π;y|sinx|周期為π;y|sinxk|周期為2π;ysin|x|不是周期函數(shù)。

13.得到函數(shù)yAsin(x)圖像的方法:

y=sin(x+)ysin(x)y①y=sinx

周期變換

向左或向右平移||個單位

平移變換周期變換振幅變換

Asin(x)

②y=sinxysinxysin(x)yAsin(x)14.簡諧運(yùn)動

①解析式:yAsin(x),x[0,+)②振幅:A就是這個簡諧運(yùn)動的振幅。③周期:T④頻率:f=

振幅變換

1

T2π

⑤相位和初相:x稱為相位,x=0時的相位稱為初相。

1.向量:數(shù)學(xué)中,我們把既有大小,又有方向的量叫做向量。數(shù)量:我們把只有大小沒有方向的量稱為數(shù)量。2.有向線段:帶有方向的線段叫做有向線段。有向線段三要素:起點(diǎn)、方向、長度。

3.向量的長度(模):向量AB的大小,也就是向量AB的長度(或稱模),記作|AB|。

4.零向量:長度為0的向量叫做零向量,記作0,零向量的方向是任意的。

單位向量:長度等于1個單位的向量,叫做單位向量。

5.平行向量:方向相同或相反的非零向量叫做平行向量。若向量a、b是兩個平行向量,那么通常記作a∥b。

平行向量也叫做共線向量。我們規(guī)定:零向量與任一向量平行,即對于任一向量a,都有0∥a。

6.相等向量:長度相等且方向相同的向量叫做相等向量。若向量a、b是兩個相等向量,那么通常記作a=b。

BC=b,b,7.如圖,已知非零向量a、在平面內(nèi)任取一點(diǎn)A,作AB=a,則向量AC叫做a與b的和,記作ab,

即abABBCAC。

向量的加法:求兩個向量和的運(yùn)算叫做向量的加法。這種求向量的方法稱為向量加法的三角形法則。

8.對于零向量與任一向量a,我們規(guī)定:a+0=0+a=a

9.公式及運(yùn)算定律:①A1A2+A2A3+...+AnA1=0②|a+b|≤|a|+|b|

(a+b)+ca(b+c)③a+bba④

10.相反向量:①我們規(guī)定,與a長度相等,方向相反的向量,叫做a的相反向量,記作-a。a和-a互為相反向

量。

②我們規(guī)定,零向量的相反向量仍是零向量。

③任一向量與其相反向量的和是零向量,即a+(-a)(=-a)+a=0。

④如果a、b是互為相反的向量,那么a=-b,b=-a,ab=0。

⑤我們定義a-b=a+,即減去一個向量等于加上這個向量的相反向量。(-b)

11.向量的數(shù)乘:一般地,我們規(guī)定實(shí)數(shù)λ與向量a的積是一個向量,這種運(yùn)算叫做向量的數(shù)乘。記作a,它的

長度與方向規(guī)定如下:①|(zhì)a|a|②當(dāng)λ>0時,a的方向與a的方向相同;當(dāng)λ<0時,的方向與a的

方向相反;λ=0時,a=0

(a)()a12.運(yùn)算定律:①

②()aaa

③(ab)=ab

()a(a)(a)(ab)=ab④⑤

13.定理:對于向量a(a≠0)、b,如果有一個實(shí)數(shù)λ,使b=a,那么a與b共線。相反,已知向量a與b

共線,a≠0,且向量b的長度是向量a的長度的μ倍,即|b|=μ|a|,那么當(dāng)a與b同方向時,有b=a;當(dāng)a

與b反方向時,有b=a。則得如下定理:向量向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有一個實(shí)數(shù)λ,使b=a。

14.平面向量基本定理:如果e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量a,有且

只有一對實(shí)數(shù)1、2,使a1e12e2。我們把不共線的向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基

底。

15.向量a與b的夾角:已知兩個非零向量a和b。作OAa,OBb,則AOB(0°≤θ≤180°)叫

做向量a與b的夾角。當(dāng)θ=0°時,a與b同向;當(dāng)θ=180°時,a與b反向。如果a與b的夾角是90°,我們說a與b垂直,記作ab。

16.補(bǔ)充結(jié)論:已知向量a、b是兩個不共線的兩個向量,且m、n∈R,若manb0,則m=n=0。

17.正交分解:把一個向量分解為兩個互相垂直的向量,叫做把向量正交分解。

18.兩個向量和(差)的坐標(biāo)分別等于這兩個向量相應(yīng)坐標(biāo)的和(差)。即若a(x1,y1),b(x2,y2),則

ab(x1x2,y1y2),ab(x1x2,y1y2)

19.實(shí)數(shù)與向量的積的坐標(biāo)等于用這個實(shí)數(shù)乘原來向量的相應(yīng)坐標(biāo)。即若a(x1,y1),則a(x1,y1)

20.當(dāng)且僅當(dāng)x1y2-x2y1=0時,向量a、b(b≠0)共線

x1x2y1y2

21.定比分點(diǎn)坐標(biāo)公式:當(dāng)P1PPP2時,P點(diǎn)坐標(biāo)為(,)

11

①當(dāng)點(diǎn)P在線段P1P2上時,點(diǎn)P叫線段P1P2的內(nèi)分點(diǎn),λ>0②當(dāng)點(diǎn)P在線段P1P2的延長線上時,P叫線段P1P2的外分點(diǎn),λ<-1;當(dāng)點(diǎn)P在線段P1P2的反向延長線上時,P叫線段P1P2的外分點(diǎn),-1<λ<0.22.從一點(diǎn)引出三個向量,且三個向量的終點(diǎn)共線,

B

則OCOAOB,其中λ+μ=1

23.數(shù)量積(內(nèi)積):已知兩個非零向量a與b,我們把數(shù)量|a||b|cos叫做a與b的數(shù)量積(或內(nèi)積),記作a2b即a2b=|a||b|cos。其中θ是a與b的夾角,

|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。我們規(guī)定,零向量與任一向量的數(shù)量

積為0。

24.a2b的幾何意義:數(shù)量積a2b等于a的長度|a|與b在a的方向上的投影|b|cos的乘積。

25.數(shù)量積的運(yùn)算定律:①a2b=b2a②(λa)2b=λ(a2b)=a2(λb)③(a+b)2c=a2c+b2c22222222④(ab)a2abb⑤(ab)a2abb⑥(ab)(ab)ab

26.兩個向量的數(shù)量積等于它們對應(yīng)坐標(biāo)的乘積的和。即abx1x2y1y2。則:

22

2

①若a(x,y),則|a|xy,或|a|。如果表示向量a的有向線段的起點(diǎn)和中點(diǎn)的坐標(biāo)分別為(x2x1,y2y1)

(x1,y1)(x2,y2)、,那么a,|a|

(x1,y1)(x2,y2)②設(shè)a,b,則abx1x2y1y20ab0

(x1,y1)(x2,y2)27.設(shè)a、b都是非零向量,a,b,θ是a與b的夾角,根據(jù)向量數(shù)量積的定義及坐標(biāo)表

ab

示可得:cos

|a||b|

cs1.兩角和的余弦公式【簡記C(α+β)】:oos2.兩角差的余弦公式【簡記C(α-β)】:c

csocsnisniso

coscosnisnis

3.兩角和(差)余弦公式的公式特征:①左加號,右減號。②同名函數(shù)之積的和與差。③α、β叫單角,α±β

叫復(fù)角,通過單角的正、余弦求和(差)的余弦值。④“正用”、“逆用”、“變用”

is4.兩角和的正弦公式【簡記S(α+β)】:nis5.兩角差的正弦公式【簡記S(α-β)】:n

isoscosnisnc

nisoscosnisc

6.兩角和(差)正弦公式的公式特征及用途:①左右運(yùn)算符號相同。②右方是異名函數(shù)之積的和與差,且正弦值

>>>返回目錄

怎樣讓數(shù)學(xué)成績提高

一、課內(nèi)重視聽講,課后及時復(fù)習(xí)

接受一種新的數(shù)學(xué)知識,主要實(shí)在課堂上進(jìn)行的,所以要重視課堂上的數(shù)學(xué)學(xué)習(xí)效率,找到適合自己的數(shù)學(xué)學(xué)習(xí)方法,上課時要跟住老師的思路,積極思考。下課之后要及時復(fù)習(xí),遇到不懂的地方要及時去問,在做作業(yè)的時候,先把老師課堂上講解的內(nèi)容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急于翻看答案。還要經(jīng)常性的總結(jié)和復(fù)習(xí),把知識點(diǎn)結(jié)合起來,變成自己的知識體系。

二、多做題,養(yǎng)成良好的解題習(xí)慣

要想學(xué)好數(shù)學(xué),大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數(shù)學(xué)成績。剛開始做題的時候先以書上習(xí)題為主,答好基礎(chǔ),然后逐漸增加數(shù)學(xué)難度,開拓數(shù)學(xué)思路,練習(xí)各種類型的解題思路,對于容易出現(xiàn)錯誤的題型,應(yīng)該記錄下來,反復(fù)加以聯(lián)系。在做題的時候應(yīng)該養(yǎng)成良好的解題習(xí)慣,集中注意力,這樣才能進(jìn)入最佳的狀態(tài),形成習(xí)慣,這樣在考試的時候才能運(yùn)用自如。

>>>返回目錄

高考填報志愿的注意事項(xiàng)

1、要重視抓早度,不要輕視趕晚

以本科為例,考生一般需要填報一本、二本、三本,每一批次至少要考慮5所院校,加上留有一定的備選學(xué)校,這樣就可能達(dá)到15-20所。

考生及家長需要對這些高校有個大致的了解,需要把各個高校的招生簡章的內(nèi)容加以解讀,吃透、讀懂、弄通,需要掌握這些學(xué)校前幾年的最低錄取分?jǐn)?shù)線(簡稱校線),并測算出當(dāng)年大致的校線,等等。

高考志愿要做到填得好、報得巧,沒有幾個月的時間是拿不下來的。因此,希望家長和考生一定要重視高考志愿填報,早作準(zhǔn)備,不要等到考試完了以后再抓,那樣很可能就來不及了。

2、要分清主次,不要包辦代替

許多家長認(rèn)為孩子涉世未深,而自己經(jīng)驗(yàn)豐富,對于高考志愿填報也當(dāng)仁不讓。其實(shí)這是很不合適的。首先,考生大多十七八歲,他們的人生觀、世界觀正在逐步形成,他們對社會,尤其是對自己想上什么學(xué)校及專業(yè),有一定的認(rèn)識。

其次,高考志愿填報的目的是上大學(xué)——讀書。而這個書是由考生去讀,如果他不認(rèn)可、不感興趣,是不利于他學(xué)有所成的。所以在志愿填報這個事關(guān)孩子理想與前途的事情上,應(yīng)該以考生為主,家長只起參謀、輔助的作用,絕不能越位,更不可包辦代替。

3、要有理有據(jù),不要憑想當(dāng)然

高考志愿填報是關(guān)系考生命運(yùn)和前途的終身大事,可現(xiàn)實(shí)中還有些考生及家長跟著感覺走,僅憑想當(dāng)然、靠道聽途說就完成了志愿填報。

首先,要了解學(xué)校的“前世今生”,全面客觀地了解學(xué)校各方面的情況。其次,要從學(xué)校的內(nèi)涵上去識別大學(xué)高考志愿。如學(xué)校的辦學(xué)歷史、發(fā)展過程等等。

因?yàn)槲睦砭饪梢允箤W(xué)生具備完整的知識結(jié)構(gòu),全面發(fā)展,重點(diǎn)學(xué)科是職能部門對學(xué)科的認(rèn)可度,院士、長江學(xué)者、教授的水平和數(shù)量是大學(xué)整體實(shí)力的重要指標(biāo),就業(yè)率高、就業(yè)層次和就業(yè)地域這些將直接關(guān)系到學(xué)生未來的去向。



>>>返回目錄

高一數(shù)學(xué)知識點(diǎn)總結(jié)大全(最新版)相關(guān)文章

高一數(shù)學(xué)知識點(diǎn)梳理歸納

高一學(xué)期數(shù)學(xué)基本知識點(diǎn)歸納

高一數(shù)學(xué)??贾R點(diǎn)總結(jié)

高一數(shù)學(xué)知識點(diǎn)小歸納

高一數(shù)學(xué)必修一知識點(diǎn)整理大全

高一數(shù)學(xué)知識點(diǎn)歸納梳理

高一數(shù)學(xué)重要知識點(diǎn)梳理

高中數(shù)學(xué)必修一三角函數(shù)知識點(diǎn)總結(jié)

高一冪函數(shù)知識點(diǎn)總結(jié)

高中數(shù)學(xué)算法初步知識點(diǎn)整理

532322