高中數(shù)學(xué)教案模板
數(shù)學(xué)教案怎么做?從學(xué)生的實際情況進行備課,每提出一個問題,首先想到你的學(xué)生會怎么回答和怎么思考的,這樣備出來的課收到的效果必然非常好!今天小編在這給大家整理了數(shù)學(xué)教案大全,接下來隨著小編一起來看看吧!
數(shù)學(xué)教案(一)
函數(shù)單調(diào)性與奇偶性
教學(xué)目標
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個角度認識單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴謹?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點難點分析
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.
三、教法建議
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標為選題的標準,以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值
開始,逐漸讓 在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來.經(jīng)歷了這樣的過程,再得到等式
時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
數(shù)學(xué)教案(二)
等差數(shù)列
【教學(xué)目標】
1. 知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
①等差數(shù)列的概念;②等差數(shù)列的通項公式
【教學(xué)難點】
①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.
【設(shè)計思路】
1.教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.
③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.
2.學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一:創(chuàng)設(shè)情境,引入新課
1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學(xué)生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二:觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)
三:舉一反三,鞏固定義
1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0 .
(設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計意圖:強化等差數(shù)列的證明定義法)
四:利用定義,導(dǎo)出通項
1.已知等差數(shù)列:8,5,2,…,求第200項?
2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)
五:應(yīng)用通項,解決問題
1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?
2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差數(shù)列 3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六:反饋練習(xí):教材13頁練習(xí)1
七:歸納總結(jié):
1.一個定義:
等差數(shù)列的定義及定義表達式
2.一個公式:
等差數(shù)列的通項公式
3.二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補充
(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.
數(shù)學(xué)教案(三)
《函數(shù)及其表示》
一、教材分析
(一)地位與作用
函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一,函數(shù)的學(xué)習(xí)大致可分為三個階段:第一階段在義務(wù)教育階段,學(xué)習(xí)了函數(shù)的描述性概念,接觸了正比例函數(shù),凡比例函數(shù),一次函數(shù),二次函數(shù)等;本章學(xué)習(xí)的函數(shù)的概念、基本性質(zhì)與后續(xù)將要學(xué)習(xí)的基本初等函數(shù)(i)和(iI)是函數(shù)學(xué)習(xí)的第二階段,是對函數(shù)概念的再認識階段;第三階段在選修系列得導(dǎo)數(shù)及其應(yīng)用的學(xué)習(xí),使函數(shù)學(xué)習(xí)的進一步深化和提高。因此函數(shù)及其表述這一節(jié)在高中數(shù)學(xué)中,起著承上啟下的作用,函數(shù)的思想貫穿高中數(shù)學(xué)的始終,學(xué)好這章不僅在知識方面,更重要的是在函數(shù)的思想、方法方面,將會讓學(xué)生在今后的學(xué)習(xí)、工作和生活中受益無窮。
本小節(jié)介紹了函數(shù)概念,及表示方法.我將本小節(jié)分為兩課時,第一課時完成函數(shù)概念的教學(xué),第二課時完成函數(shù)圖象的教學(xué)。這里我主要談?wù)労瘮?shù)概念的教學(xué)。
函數(shù)的概念部分用三個實際例子設(shè)計數(shù)學(xué)情境,讓學(xué)生探尋變量和變量的對應(yīng)關(guān)系,結(jié)合初中學(xué)習(xí)的函數(shù)理論,在集合論的基礎(chǔ)上,促使學(xué)生建構(gòu)出函數(shù)的概念,體驗結(jié)合舊知識,探索新知識,研究新問題的快樂。
(二)學(xué)情分析
(1)在初中,學(xué)生已經(jīng)學(xué)習(xí)過函數(shù)的概念,并且知道函數(shù)是變量之間的相互依賴關(guān)系.
(2)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。
(3) 學(xué)生層次參次不齊,個體差異比較明顯。
二、目標分析
根據(jù)《函數(shù)的概念》在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標:
(一)教學(xué)目標
(1)知識與技能
1進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,○能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用
2了解構(gòu)成函數(shù)的要素,○理解函數(shù)定義域和值域的概念,并會求一些簡單函數(shù)的定義域。 ③由實際問題出發(fā),培養(yǎng)學(xué)生探索知識和抽象概括知識等方面的能力。
(2)過程與方法
引導(dǎo)學(xué)生觀察,探尋變量和變量的對應(yīng)關(guān)系,通過歸納、抽象、概括,自主建構(gòu)函數(shù)概念;體驗結(jié)合舊知識探索新知識,研究新問題的快樂
(3)情感態(tài)度與價值觀
通過對函數(shù)概念形成的探究過程培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)
(二)重點難點
重點:體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,正確理解函數(shù)的概念 難點:函數(shù)概念及符號y=f(x)的理解
三、教法、學(xué)法分析
(一)教法
在本課的教學(xué)過程中采用設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn)的方法,并靈活應(yīng)用多媒體手段,以學(xué)生為主體,創(chuàng)設(shè)和諧、愉悅互動的環(huán)境,組織學(xué)生自主、合作的探究活動,引導(dǎo)學(xué)生探索新知識。
(二)學(xué)法
首先,學(xué)生通過研究教師在課堂上提供的實例和提出的問題,展開分析和討論,發(fā)表個人的見解,接下來采用學(xué)生評價學(xué)生的方法提煉問題的中心思想。其次,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。最后,學(xué)生在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
四、教學(xué)過程分析
(一)教學(xué)過程設(shè)計
(1)創(chuàng)設(shè)情境,提出問題。
引入課本的三個具體實例,引發(fā)學(xué)生的探索
對于例1:可以分別讓學(xué)生計算t=1,2,5,10時,炮彈距離地面多高,同時關(guān)注t和h的變化范圍,引導(dǎo)學(xué)生體會有解析式刻畫變量之間的對應(yīng)關(guān)系,啟發(fā)學(xué)生用集合與對應(yīng)的語言描述函數(shù)關(guān)系:
對于例2:可以讓學(xué)生觀察圖像,找出臭氧空洞面積的年份或者臭氧空洞面積大約為2000萬平方千米所對應(yīng)的年份,引導(dǎo)學(xué)生體會圖像對刻畫變量之間的對應(yīng)關(guān)系,并關(guān)注t和s的范圍。啟發(fā)學(xué)生再次利用集合與對應(yīng)的語言描述函數(shù)關(guān)系:
對于例3:恩格爾系數(shù)與時間之間的關(guān)系是否和前兩個例題的兩個變量之間的關(guān)系相似?如何用集合和對應(yīng)的語言進行描述
(2)引導(dǎo)探究,建構(gòu)概念。
(1)進一步提問:“你覺得這三個問題有沒有共同的特點呢?”由于這個問題比較開放,所以學(xué)生,容易形成數(shù)學(xué)以外的或者不在本課研究范圍的觀點。首先采用小組合作探究的形式獲得共識,并由各小組派代表發(fā)表探究成果,接著再讓其它學(xué)生根據(jù)老師的敘述,評論、提煉出重點。作為教學(xué)的引導(dǎo)者,我需要及時對學(xué)生的解答進行指引。最終得出函數(shù)的概念
(2)教師概括總結(jié)學(xué)生的探究成果,形成函數(shù)概念,并進一步解釋函數(shù)概念
I、函數(shù)的三要素
Ii函數(shù)富豪的內(nèi)涵
為深化學(xué)生對函數(shù)概念的理解 ,還可以用函數(shù)概念解析已經(jīng)學(xué)過的一次函數(shù),二次函數(shù),婦女比例函數(shù)等,可以設(shè)計如下表格
函數(shù) 一次函數(shù) 二次函數(shù) 反比例函數(shù)
對應(yīng)關(guān)系
定義域
值域
由學(xué)生填寫
(3)自我嘗試,初步應(yīng)用。
例1、判斷下列圖像是否為函數(shù)圖像??疾鞂W(xué)生對函數(shù)定義的理解
例2、采用課本例1,并增加一問若f(x)=-1,求x
目的是引導(dǎo)學(xué)生探究求函數(shù)定義域的基本方法;對于用解析式表示的函數(shù)會用解析式求
函數(shù)值或有函數(shù)值求子變量的值,進一步體會函數(shù)級號的含義,區(qū)分f(-1),f(a),f(x) 例3.采用課本例2
目的:通過判斷函數(shù)的相等認識到函數(shù)的整體性,并指出在三要素中,由于值域是由定義域和對應(yīng)法則決定的,所以只要兩個函數(shù)的定義域和對應(yīng)關(guān)系相同,兩個函數(shù)就相等;進一步加深函數(shù)概念的理解
(4)當(dāng)堂訓(xùn)練,鞏固深化。
通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
采用課后練習(xí)1、2、3
(5)小結(jié)歸納,回顧反思。
小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。我設(shè)計了三個問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?(2)通過本節(jié)課的學(xué)習(xí),你的體驗是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?
(二)作業(yè)設(shè)計
作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.
我設(shè)計了以下作業(yè):
(1)必做題:課后習(xí)題A 1(2,3),2、5、6
(2)選做題:課后習(xí)題B 1、2
(三)板書設(shè)計
板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。
五、評價分析
學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對本節(jié)是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。
以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。
謝謝!
高中數(shù)學(xué)教案模板相關(guān)文章:
★ 高中數(shù)學(xué)優(yōu)秀教案設(shè)計
★ 2020高中數(shù)學(xué)教學(xué)教案3篇
★ 高中數(shù)學(xué)必修4任意角的三角函數(shù)教案