怎樣才能提高初中數(shù)學(xué)成績
數(shù)學(xué)成績的提升,并不是我們升到初中之后就會有所轉(zhuǎn)變的,這個還是要看我們平時的努力與付出。下面是學(xué)習(xí)啦小編給大家整理的怎樣才能提高初中數(shù)學(xué)成績,供大家參閱!
怎樣才能提高初中數(shù)學(xué)成績
學(xué)習(xí)效率之關(guān)于難題
很多學(xué)生喜歡攻克難題的那種樂趣,于是他們拿出那種不到黃河心不死的精神,有時候耗費一節(jié)課時間,攻克一道難題,并且很有成就感。
問題就在于,一節(jié)課攻克一道題,效率真的太低了。學(xué)習(xí)高手絕對不會這么做。
記?。河肋h(yuǎn)不要花一節(jié)課時間去攻克一道難題,這是造成學(xué)習(xí)效率低下的重大原因。你用一節(jié)課攻克一道題,其他題目怎么辦,你時間夠用嗎,更重要的是,你對這道題目,真的收獲很大嗎。
高手的策略:如果一道題花10分鐘仍然無法解決,那么就直接看答案,或者等老師講解。因為,會做這道題,且能夠舉一反三,能夠做充分的歸納總結(jié)才是最重要的目的。
看完答案,或者聽完講解之后,你必須要花更多的時間來歸納總結(jié):我為何沒有解答出這道題,突破口在哪里,我為什么沒找到,是哪些關(guān)鍵詞匯觸發(fā)了解題思路,我該如何建立條件反射,以便以后再次看到這些詞匯信息,迅速找到相關(guān)突破口。記住,這才是最最重要的工作。
什么是高水平重復(fù)?
一道題,剛開始你不熟悉,那么,你需要做十遍甚至更多遍,把整個題目做到滾瓜爛熟。這個時候,如果你還在不斷地重復(fù)做這道題,那么就是低水平重復(fù),因為,你已經(jīng)在浪費時間,不會再有進(jìn)步了。
高手們會這么做:當(dāng)這道題熟悉了,他就開始放棄了,把大把時間拿來,去攻克自己不熟悉的題目,不斷地把陌生轉(zhuǎn)化為熟悉。他們也在重復(fù),但是,是高水平重復(fù)。
歸納總結(jié)很重要
數(shù)學(xué)的歸納總結(jié)太重要了。頂尖優(yōu)秀的學(xué)生,他們做一道題花5分鐘,然后會拿出10-15分鐘來做歸納總結(jié),來寫解題筆記。
歸納總結(jié),其實就是解題聯(lián)想,就是書寫解題筆記,就是總結(jié)“條件反射”。要提高對關(guān)鍵詞匯的敏感度,能夠通過關(guān)鍵詞匯,迅速建立起條件反射,找到解題突破口,這就是所謂的解題聯(lián)想。這是數(shù)學(xué)高手的必修課。
歸納總結(jié),總結(jié)的都是條件反射,也就是,我看到什么,就要聯(lián)想到什么,然后一舉突破這道題目。比如,看到“整數(shù)”這個詞,我就要想到數(shù)學(xué)歸納法。
提高初中數(shù)學(xué)成績的思維
1、對應(yīng)思想方法
對應(yīng)是人們對兩個集合因素之間的聯(lián)系的一種思想方法,小學(xué)數(shù)學(xué)一般是一一對應(yīng)的直觀圖表,并以此孕伏函數(shù)思想。如直線上的點(數(shù)軸)與表示具體的數(shù)是一一對應(yīng)。
2、假設(shè)思想方法
假設(shè)是先對題目中的已知條件或問題作出某種假設(shè),然后按照題中的已知條件進(jìn)行推算,根據(jù)數(shù)量出現(xiàn)的矛盾,加以適當(dāng)調(diào)整,最后找到正確答案的一種思想方法。假設(shè)思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數(shù)學(xué)中常見的思想方法之一,也是促進(jìn)學(xué)生思維發(fā)展的手段。在教學(xué)分?jǐn)?shù)應(yīng)用題中,教師善于引導(dǎo)學(xué)生比較題中已知和未知數(shù)量變化前后的情況,可以幫助學(xué)生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數(shù)字、圖形和各種特定的符號)來描述數(shù)學(xué)內(nèi)容,這就是符號思想。如數(shù)學(xué)中各種數(shù)量關(guān)系,量的變化及量與量之間進(jìn)行推導(dǎo)和演算,都是用小小的字母表示數(shù),以符號的濃縮形式表達(dá)大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據(jù)兩類數(shù)學(xué)對象的相似性,有可能將已知的一類數(shù)學(xué)對象的性質(zhì)遷移到另一類數(shù)學(xué)對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數(shù)學(xué)知識容易理解,而且使公式的記憶變得順?biāo)浦郯阕匀缓秃啙崱?/p>
6、轉(zhuǎn)化思想方法
轉(zhuǎn)化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數(shù)學(xué)獨有的方法,數(shù)學(xué)的分類思想方法體現(xiàn)對數(shù)學(xué)對象的分類及其分類的標(biāo)準(zhǔn)。如自然數(shù)的分類,若按能否被2整除分奇數(shù)和偶數(shù);按約數(shù)的個數(shù)分質(zhì)數(shù)和合數(shù)。又如三角形可以按邊分,也可以按角分。不同的分類標(biāo)準(zhǔn)就會有不同的分類結(jié)果,從而產(chǎn)生新的概念。對數(shù)學(xué)對象的正確、合理分類取決于分類標(biāo)準(zhǔn)的正確、合理性,數(shù)學(xué)知識的分類有助于學(xué)生對知識的梳理和建構(gòu)。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數(shù)學(xué)問題或非純數(shù)學(xué)問題的思想方法。小學(xué)采用直觀手段,利用圖形和實物滲透集合思想。在講述公約數(shù)和公倍數(shù)時采用了交集的思想方法。
9、數(shù)形結(jié)合思想方法
數(shù)和形是數(shù)學(xué)研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學(xué)概念,復(fù)雜的數(shù)量關(guān)系,借助圖形使之直觀化、形象化、簡單化。另一方面復(fù)雜的形體可以用簡單的數(shù)量關(guān)系表示。在解應(yīng)用題中常常借助線段圖的直觀幫助分析數(shù)量關(guān)系。
10、統(tǒng)計思想方法
小學(xué)數(shù)學(xué)中的統(tǒng)計圖表是一些基本的統(tǒng)計方法,求平均數(shù)應(yīng)用題是體現(xiàn)出數(shù)據(jù)處理的思想方法。
11、極限思想方法
事物是從量變到質(zhì)變的,極限方法的實質(zhì)正是通過量變的無限過程達(dá)到質(zhì)變。在講“圓的面積和周長”時,“化圓為方”“化曲為直”的極限分割思路,在觀察有限分割的基礎(chǔ)上想象它們的極限狀態(tài),這樣不僅使學(xué)生掌握公式還能從曲與直的矛盾轉(zhuǎn)化中萌發(fā)了無限逼近的極限思想。
12、代換思想方法
它是方程解法的重要原理,解題時可將某個條件用別的條件進(jìn)行代換。如學(xué)校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
13、可逆思想方法
它是邏輯思維中的基本思想,當(dāng)順向思維難于解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法
把有可能解決的或未解決的問題,通過轉(zhuǎn)化過程,歸結(jié)為一類以便解決可較易解決的問題,以求得解決,這就是“化歸”。而數(shù)學(xué)知識聯(lián)系緊密,新知識往往是舊知識的引申和擴(kuò)展。讓學(xué)生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助?;瘹w的方向應(yīng)該是化隱為顯、化繁為簡、化難為易、化未知為已知。
15、變中抓不變的思想方法
在紛繁復(fù)雜的變化中如何把握數(shù)量關(guān)系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,后來又買來一些科技書,這時科技書占30%,又買來科技書多少本?
16、數(shù)學(xué)模型思想方法
所謂數(shù)學(xué)模型思想是指對于現(xiàn)實世界的某一特定對象,從它特定的生活原型出發(fā),充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設(shè),它是把生活中實際問題轉(zhuǎn)化為數(shù)學(xué)問題模型的一種思想方法。培養(yǎng)學(xué)生用數(shù)學(xué)的眼光認(rèn)識和處理周圍事物或數(shù)學(xué)問題乃數(shù)學(xué)的最高境界,也是學(xué)生高數(shù)學(xué)素養(yǎng)所追求的目標(biāo)。
17、整體思想方法
對數(shù)學(xué)問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。
養(yǎng)成提高初中數(shù)學(xué)成績的習(xí)慣
第一:記附加
老師在上課的時候有時會加入一些課本沒有的話語,而這些都是對知識的總結(jié),往往也是同學(xué)們?nèi)菀缀鲆暤牡胤剑@些內(nèi)容可以啟發(fā)學(xué)生思維的延展性,并且也利于學(xué)生基本技能的提升。
第二:記例題
老師每次課上都會有一些比較新穎的例題來為同學(xué)們展示,通過例題傳授給學(xué)生常用的解題技巧與方法。記錄這些例題,方便同學(xué)們對于例題的方法融會貫通,是提高成績的顯著方法。
第三:記疑問
有的同學(xué)在課堂上聽老師講課,難免有不明白的地方,但是又怕影響大家上課,而不敢提問,想要課下解決,但是很可能下課就忘記了,這樣疑問就積累下來了,到了最后,越積越多,以至于成績總是不提高。如果能把當(dāng)時的問題記在筆記本上,這樣在下課的時候即使忘記了,回到家一翻筆記也看到了,這個時候及時問家長或者同學(xué)。馬上解決問題是重點,不要把問題留給明天。
第四:記總結(jié)
每學(xué)完一段知識,一個新的知識,或者學(xué)到新的解題方法,都要把自己的心得記錄下來,然后仔細(xì)地去咀嚼、去思考:知識的重點在哪里、新的解題方法好在哪里、以后看到類似的問題怎么去運用。有了這樣的思考,那么今后就不會一看到?jīng)]見過的題,就擔(dān)心自己是否有能力解決,而是考慮這個問題和我學(xué)過的哪個知識相關(guān),找到這個題目基本應(yīng)該用什么樣的方法去解決。形成自己的解題思路,這樣對于提高學(xué)生的本身能力是非常有幫助的。
最后:如何利用好數(shù)學(xué)筆記
數(shù)學(xué)筆記不能當(dāng)作一個展示品給別人看,而是要像珍藏品一樣自己時常去看。每天最好給自己安排10分鐘左右的時間把今天所記的筆記認(rèn)真、仔細(xì)地看一遍,鞏固學(xué)過的知識。并且在每次的月考、期中、期末前都要認(rèn)真再看一次,并且把筆記里面的內(nèi)容前后連結(jié)到一起,形成一個知識結(jié)果框架,這樣,才能學(xué)好數(shù)學(xué),提高成績。
3、初中數(shù)學(xué)考試的5個小技巧
方法一:檢查基本概念
基本概念、法則、公式是同學(xué)們檢查時最容易忽視的,因此在解題時極易發(fā)生小錯誤而自己卻檢查數(shù)次也發(fā)現(xiàn)不了,所以,做完試卷第一步,在檢查基本題時,我們要仔細(xì)讀題,回到概念的定義中去,對癥下藥。
方法二:對稱檢驗
對稱的條件勢必導(dǎo)致結(jié)論的對稱,利用這種對稱原理可以對答案進(jìn)行快速檢驗。
方法三:不變量檢驗
某些數(shù)學(xué)問題在變化、變形過程中,其中有的量保持不變,如圖形的平移、旋轉(zhuǎn)、翻折時,圖形的形狀、大小不變,基本量也不變。利用這種變化過程中的不變量,可以直接驗證某些答案的正確性。
方法四:特殊情形檢驗
問題的特殊情況往往比一般情況更易解決,因此通過特殊值、特例來檢驗答案是非常快捷的方法。
方法五:答案逆推法
相信這種方法很多學(xué)生都會,在求出題目的答案后,可將答案重新代回題目中,檢驗題目的條件是否還成立。但是這種方法一定要注意,要想想有沒有可能存在多解的情形。
總而言之,要想提高檢查的次數(shù)與效率,又想避免枯燥的重復(fù),就需要一題多解去檢驗。
一道題,使用原來的方法去做,固然也能發(fā)現(xiàn)錯誤,但是人都是有慣性思維的,很容易就忽視了一些小的錯誤。
如果在檢查時,我們都盡量去想一些新的方法,那樣,一來可以檢查答案的對錯,二來可以減少機(jī)械性重復(fù)產(chǎn)生的枯燥感,三來思考新的解法也是鍛煉思維的一種手段,四來能將試卷中的題的作用發(fā)揮到最大,可以說是一舉多得的好措施。
此外,直接檢查作為最基礎(chǔ)的方法,要重視技巧直接檢驗法就是圍繞原來的解題方法,針對求解的過程及相關(guān)結(jié)論進(jìn)行核對、查校、驗算。為配合檢查,首先應(yīng)正確使用草稿紙。建議大家將草稿紙疊出格痕,按順序演算,并標(biāo)上題號,方便檢查對照。其次,一定要細(xì)心細(xì)心再細(xì)心,每一個細(xì)節(jié)都需要仔細(xì)推敲,而不能“想當(dāng)然”,記住“最安全的地方有時候也是最危險的地方”。
看過怎樣才能提高初中數(shù)學(xué)成績的人還看了: