中考數(shù)學(xué)一輪模擬試卷帶答案(2)
中考數(shù)學(xué)一輪模擬試卷答案
1.C 2.D 3.D 4.C 5.B 6.C 7.C 8.A
9.20
10.AB=AC或AD=AE或BD=CE或BE=CD(寫出一個即可)
11.解:(1)由三角板的性質(zhì)可知:
∠D=30°,∠3=45°,∠DCE=90°.
∵CF平分∠DCE,∴∠1=∠2=12∠DCE=45°.
∴∠1=∠3,∴CF∥AB.
(2)由三角形內(nèi)角和可得∠DFC=180°-∠1-∠D=180°-45°-30°=105°.
12.(1)證明:∵∠ABC=90°,∴∠DBE=180°-∠ABC=90°.
∴∠ABE=∠CBD.
在△ABE和△CBD中,
AB=CB,∠ABE=∠CBD,BE=BD,∴△ABE≌△CBD(SAS)
(2)解:∵AB=CB,∠ABC=90°,
∴△ABC是等腰直角三角形.∴∠ECA=45°.
∵∠CAE=30°,∠BEA=∠ECA+∠EAC,
∴∠BEA=45°+30°=75°.
由①知∠BDC=∠BEA,∴∠BDC=75°.
13.D 14.13
15.證明:(1)∵BD⊥直線m,CE⊥直線m,
∴∠BDA=∠CEA=90°.
∵∠BAC=90°,∴∠BAD+∠CAE=90°.
∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.
又AB=AC,∴△ADB≌△CEA.
∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.
(2)成立.∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α.
∴∠DBA=∠CAE.
∵∠BDA=∠AEC=α,AB=AC,
∴△ADB≌△CEA.∴AE=BD,AD=CE.
∴DE=AE+AD=BD+CE.
(3)由(2)知,△ADB≌△CEA,
則BD=AE,∠DBA=∠EAC.
∵△ABF和△ACF均為等邊三角形,
∴∠ABF=∠CAF=60°.
∴∠DBA+∠ABF=∠EAC+∠CAF.
∴∠DBF=∠EAF.
∵BF=AF,BD=AE,∴△DBF≌△EAF.
∴DF=EF,∠BFD=∠AFE.
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.
∴△DEF為等邊三角形.
猜你感興趣: