高中數(shù)學必修2立體幾何怎么學
大家都知道數(shù)學立體幾何是出了名的難學,但是又不得不學,那應該怎么學呢?以下是學習啦小編分享給大家的高中數(shù)學必修2立體幾何的學習方法,希望可以幫到你!
高中數(shù)學必修2立體幾何的學習方法
一、逐漸提高邏輯論證能力
立體幾何的證明是數(shù)學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實基礎
學習立體幾何的一個捷徑就是認真學習課本中定理的證明,尤其是一些很關鍵的定理的證明。定理的內容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學的時候一般都很復雜,甚至很抽象。深刻掌握定理的內容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力
為了培養(yǎng)空間想象力,可以在剛開始學習時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀。空間想象力并不是漫無邊際的胡思亂想,而是以提設為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
四、“轉化”思想的應用
解立體幾何的問題,主要是充分運用“轉化”這種數(shù)學思想,要明確在轉化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關鍵的。例如:
(1)兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。
(2)異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。
(3)面和面平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。
五、建立數(shù)學模型
新課程標準中多次提到“數(shù)學模型”一詞,目的是進一步加強數(shù)學與現(xiàn)實世界的聯(lián)系。數(shù)學模型是把實際問題用數(shù)學語言抽象概括,再從數(shù)學角度來反映或近似地反映實際問題時,所得出的關于實際問題的描述。數(shù)學模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實際問題越復雜,相應的數(shù)學模型也越復雜。
從形狀的角度反映現(xiàn)實世界的物體時,經過抽象得到的空間幾何體就是現(xiàn)實世界物體的幾何模型。由于立體幾何學習的知識內容與學生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實世界中的許多物體。他們直觀、具體、對培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關系,是研究直線與直線、直線與平面、平面與平面位置關系的直觀載體。學習時,一方面要注意從實際出發(fā),把學習的知識與周圍的實物聯(lián)系起來,另一方面,也要注意經歷從現(xiàn)實的生活抽象空間圖形的過程,注重探索空間圖形的位置關系,歸納、概括它們的判定定理和性質定理。
高考數(shù)學如何解立體幾何題
1.平行、垂直位置關系的論證的策略:
(1)由已知想性質,由求證想判定,即分析法與綜合法相結合尋找證題思路。
(2)利用題設條件的性質適當添加輔助線(或面)是解題的常用方法之一。
(3)三垂線定理及其逆定理在高考題中使用的頻率最高,在證明線線垂直時應優(yōu)先考慮。
2.空間角的計算方法與技巧:
主要步驟:一作、二證、三算;若用向量,那就是一證、二算。
(1)兩條異面直線所成的角①平移法:②補形法:③向量法:
(2)直線和平面所成的角
?、僮鞒鲋本€和平面所成的角,關鍵是作垂線,找射影轉化到同一三角形中計算,或用向量計算。
?、谟霉接嬎?
(3)二面角
?、倨矫娼堑淖鞣ǎ?i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。
?、谄矫娼堑挠嬎惴ǎ?/p>
(i)找到平面角,然后在三角形中計算(解三角形)或用向量計算;(ii)射影面積法 ;(iii)向量夾角公式.
3. 空間距離的計算方法與技巧:
(1)求點到直線的距離:經常應用三垂線定理作出點到直線的垂線,然后在相關的三角形中求解,也可以借助于面積相等求出點到直線的距離。
(2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長。在不能直接作出公垂線的情況下,可轉化為線面距離求解(這種情況高考不做要求)。
(3)求點到平面的距離:一般找出(或作出)過此點與已知平面垂直的平面,利用面面垂直的性質過該點作出平面的垂線,進而計算;也可以利用“三棱錐體積法”直接求距離;有時直接利用已知點求距離比較困難時,我們可以把點到平面的距離轉化為直線到平面的距離,從而“轉移”到另一點上去求“點到平面的距離”。求直線與平面的距離及平面與平面的距離一般均轉化為點到平面的距離來求解。
4. 熟記一些常用的小結論,諸如:正四面體的體積公式是 ;面積射影公式;“立平斜關系式”;最小角定理。弄清楚棱錐的頂點在底面的射影為底面的內心、外心、垂心的條件,這可能是快速解答某些問題的前提。
5.平面圖形的翻折、立體圖形的展開等一類問題,要注意翻折前、展開前后有關幾何元素的“不變性”與“不變量”。
6.與球有關的題型,只能應用“老方法”,求出球的半徑即可。
7.立體幾何讀題:
(1)弄清楚圖形是什么幾何體,規(guī)則的、不規(guī)則的、組合體等。
(2)弄清楚幾何體結構特征。面面、線面、線線之間有哪些關系(平行、垂直、相等)。
(3)重點留意有哪些面面垂直、線面垂直,線線平行、線面平行等。
8、解題程序劃分為四個過程:
?、倥鍐栴}:也就是明白“求證題”的已知是什么?條件是什么?未知是什么?結論是什么?也就是我們常說的審題。
?、跀M定計劃:找出已知與未知的直接或者間接的聯(lián)系。在弄清題意的基礎上,從中捕捉有用的信息,并及時提取記憶網(wǎng)絡中的有關信息,再將兩組信息資源作出合乎邏輯的有效組合,從而構思出一個成功的計劃。即是我們常說的思考。
?、蹐?zhí)行計劃:以簡明、準確、有序的數(shù)學語言和數(shù)學符號將解題思路表述出來,同時驗證解答的合理性。即我們所說的解答。
?、芑仡櫍簩λ玫慕Y論進行驗證,對解題方法進行總結。
高中數(shù)學立體幾何口訣
學好立幾并不難,空間想象是關鍵。點線面體是一家,共筑立幾百花園。
點在線面用屬于,線在面內用包含。四個公理是基礎,推證演算巧周旋。
空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進空間。
判定線和面平行,面中找條平行線。已知線與面平行,過線作面找交線。
要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。
已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。
判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。
兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過另面一垂線。
面面垂直成直角,線面垂直記心間。
一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風采顯。
空間距離和夾角,平行轉化在平面,一找二證三構造,三角形中求答案。
引進向量新工具,計算證明開新篇??臻g建系求坐標,向量運算更簡便。
知識創(chuàng)新無止境,學問思辨勇攀登。
多面體和旋轉體,上述內容的延續(xù)。扮演載體新角色,位置關系全在里。
算面積來求體積,基本公式是依據(jù)。規(guī)則形體用公式,非規(guī)形體靠化歸。
展開分割好辦法,化難為易新天地。
猜你喜歡: