初中數(shù)學(xué)函數(shù)怎么學(xué)
要想中考數(shù)學(xué)成績拿高分,一定要掌握好數(shù)學(xué)函數(shù)知識,怎樣學(xué)好初中函數(shù)呢?下面學(xué)習(xí)啦小編收集了一些關(guān)于初中函數(shù)學(xué)習(xí)方法,希望對你有幫助
初中函數(shù)學(xué)習(xí)方法
1、注重“類比”思想
不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認(rèn)識來認(rèn)識與它相似的另一事物,這種認(rèn)識事物的思維方法就是類比法。初中學(xué)習(xí)的正比例函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)在概念的得來、圖象性質(zhì)的研究、及基本解題方法上都有著本質(zhì)上的相似。因此陽光學(xué)習(xí)網(wǎng)劉老師指出,采用類比的方法不但省時、省力,還有助于學(xué)生的理解和應(yīng)用。是一種既經(jīng)濟又實效的教學(xué)方法。
2、注重“數(shù)形結(jié)合”思想
數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長。
函數(shù)的三種表示方法:解析法、列表法、圖象法本身就體現(xiàn)著函數(shù)的“數(shù)形結(jié)合”。函數(shù)圖象就是將變化抽象的函數(shù)“拍照”下來研究的有效工具,函數(shù)教學(xué)離不開函數(shù)圖象的研究。
3、注重自變量的取值范圍
自變量的取值范圍,是解函數(shù)問題的難點和考點。正確求出自變量取值范圍,正確理解問題,并化歸為解不等式或不等式組。這需要學(xué)生掌握函數(shù)的思想,不等式的實際應(yīng)用,全面考慮取值的實際意義。
4、注重實際應(yīng)用問題
學(xué)習(xí)函數(shù)的主要目的之一就是在復(fù)雜的實際生活中建立有效的函數(shù)模型,利用函數(shù)的知識解決問題。這也是新課標(biāo)所倡導(dǎo)的學(xué)習(xí),因此新教材大力倡導(dǎo)函數(shù)與實際的應(yīng)用。
初中數(shù)學(xué)之函數(shù)知識點
一、平面直角坐標(biāo)系
在平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標(biāo)系。
坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點,不屬于任何象限。
二、不同位置的點的坐標(biāo)的特征
1、各象限內(nèi)點的坐標(biāo)的特征
第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-)
2、坐標(biāo)軸上的點的特征
在x軸上縱坐標(biāo)為0,在y軸上橫坐標(biāo)為,原點坐標(biāo)為(0,0)
3、兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征
點P(x,y)在第一、三象限夾角平分線上x與y相等
點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
4、和坐標(biāo)軸平行的直線上點的坐標(biāo)的特征
位于平行于x軸的直線上的各點的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點的橫坐標(biāo)相同。
5、關(guān)于x軸、y軸或遠點對稱的點的坐標(biāo)的特征
點P與點p’關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)
點P與點p’關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)
點P與點p’關(guān)于原點對稱橫、縱坐標(biāo)均互為相反數(shù)
6、點到坐標(biāo)軸及原點的距離
點P(x,y)到坐標(biāo)軸及原點的距離:
(1)到x軸的距離等于(2)到y(tǒng)軸的距離等于(3)到原點的距離等于
三、函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)的三種表示法(1)解析法(2)列表法(3)圖像法
3、由函數(shù)解析式畫其圖像的一般步驟(1)列表(2)描點(3)連線
4、自變量取值范圍
四、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,如果(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。
特別地,當(dāng)一次函數(shù)中的b為0時,(k為常數(shù),k0)。這時,y叫做x的正比例函數(shù)。
2、一次函數(shù)的圖像:是一條直線
3、正比例函數(shù)的性質(zhì),,一般地,正比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;
(2)當(dāng)k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。
4、一次函數(shù)的性質(zhì),,一般地,一次函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時,y隨x的增大而增大
(2)當(dāng)k<0時,y隨x的增大而減小
5、正比例函數(shù)和一次函數(shù)解析式的確定
確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。
6、設(shè)兩條直線分別為,::
若且。若
7、平移:上加下減,左加右減。
8、較點坐標(biāo)求法:聯(lián)立方程組
五、反比例函數(shù)
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成或xy=k的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。
2、反比例函數(shù)的圖像是雙曲線。
3、反比例函數(shù)的性質(zhì)
(1)當(dāng)k>0時,函數(shù)圖像的兩個分支分別在第一、三象限。在每個象限內(nèi),y隨x的增大而減小。
(2)當(dāng)k<0時,函數(shù)圖像的兩個分支分別在第二、四象限。在每個象限內(nèi),y隨x的增大而增大。
(3)圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標(biāo)軸,但永遠達不到坐標(biāo)軸。
(4)圖像既是軸對稱圖形又是中心對稱圖形
(5)圖像上任意一點向坐標(biāo)軸作垂線,與坐標(biāo)軸所圍成矩形面積等于|k|
4、反比例函數(shù)解析式的確定
只需要一對對應(yīng)值或圖像上的一個點的坐標(biāo),即可求出k的值,從而確定其解析式。
六、二次函數(shù)
1、二次函數(shù)的概念:一般地,如果,那么y叫做x的二次函數(shù)。
2、二次函數(shù)的圖像是一條拋物線。
3、二次函數(shù)的性質(zhì):
(1)a>0拋物線開口向上,對稱軸是x=,頂點坐標(biāo)是(,);在對稱軸的左側(cè),即當(dāng)x<時,y隨x的增大而減小;在對稱軸的右側(cè),即當(dāng)x>時,y隨x的增大而增大;拋物線有最低點,當(dāng)x=時,y有最小值,
(2)a<0拋物線開口向下,對稱軸是x=,頂點坐標(biāo)是(,);在對稱軸的左側(cè),即當(dāng)x<時,y隨x的增大而增大;在對稱軸的右側(cè),即當(dāng)x>時,y隨x的增大而減小,;
拋物線有最高點,當(dāng)x=時,y有最大值,
4、.二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點式:
(3)兩根式:
5、拋物線中的作用:
表示開口方向:>0時,拋物線開口向上,,,<0時,拋物線開口向下
與對稱軸有關(guān):對稱軸為x=,a與b左同右異
表示拋物線與y軸的交點坐標(biāo):(0,)
6、二次函數(shù)與一元二次方程的關(guān)系
一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo)。
因此一元二次方程中的,在二次函數(shù)中表示圖像與x軸是否有交點。
當(dāng)>0時,圖像與x軸有兩個交點;
當(dāng)=0時,圖像與x軸有一個交點;
當(dāng)<0時,圖像與x軸沒有交點。
7、求拋物線的頂點、對稱軸的方法
(1)公式法:頂點是,對稱軸是直線.
(2)配方法:運用配方的方法,將拋物線的解析式化為的形式,得到頂點為(,),對稱軸是直線.
猜你感興趣:
1.初中數(shù)學(xué)函數(shù)的學(xué)習(xí)方法
3.初中數(shù)學(xué)該怎么學(xué)習(xí)