怎么學(xué)好數(shù)學(xué)幾何
在初中數(shù)學(xué)的學(xué)習(xí)中,幾何一直是大多數(shù)學(xué)生的難題,那么學(xué)習(xí)幾何到底有沒有捷徑呢?下面學(xué)習(xí)啦小編收集了一些關(guān)于數(shù)學(xué)幾何學(xué)習(xí)方法,希望對你有幫助
數(shù)學(xué)幾何學(xué)習(xí)方法1
(一)對基礎(chǔ)知識的掌握一定要牢固,在這個(gè)基礎(chǔ)上我們才能談如何學(xué)好的問題。例如我們在證明相似的時(shí)候,如果利用兩邊對應(yīng)成比例及其夾角相等的方法時(shí),必須注意所找的角是兩邊的夾角,而不能是其它角。在回答圓的對稱軸時(shí)不能說是它的直徑,而必須說是直徑所在的直線。像這樣的細(xì)節(jié)我們必須在平時(shí)就要引起足夠的重視并且牢固掌握,只有這樣才是學(xué)好幾何的基礎(chǔ)。
(二)善于歸納總結(jié),熟悉常見的特征圖形。舉個(gè)例子,已知A,B,C三點(diǎn)共線,分別以AB,BC為邊向外作等邊△ABD和等邊△BCE,如果再?zèng)]有其他附加條件,那么你能從這個(gè)圖形中找到哪些結(jié)論?
我們通過很多習(xí)題能夠總結(jié)出:一般情況下題目中如果有兩個(gè)有公共頂點(diǎn)的等邊三角形就必然會(huì)出現(xiàn)一對旋轉(zhuǎn)式的全等三角形的結(jié)論,這樣我們很容易得出△ABE≌△DBC,在這對全等三角形的基礎(chǔ)上我們還會(huì)得出△EMB≌△CNB,△MBN是等邊三角形,MN∥AC等主要結(jié)論,這些結(jié)論也會(huì)成為解決其它問題的橋梁。在幾何的學(xué)習(xí)中這樣典型的圖形很多,要善于總結(jié)。
(三)熟悉解題的常見著眼點(diǎn),常用輔助線作法,把大問題細(xì)化成各個(gè)小問題,從而各個(gè)擊破,解決問題。在我們對一個(gè)問題還沒有切實(shí)的解決方法時(shí),要善于捕捉可能會(huì)幫助你解決問題的著眼點(diǎn)。
數(shù)學(xué)幾何學(xué)習(xí)方法2
(一)對基礎(chǔ)知識的把握一定要牢固,在這個(gè)基礎(chǔ)上我們才能談如何學(xué)好的新問題。例如我們在證實(shí)相似的時(shí)候,假如利用兩邊對應(yīng)成比例及其夾角相等的方法時(shí),必須注重所找的角是兩邊的夾角,而不能是其它角。在回答圓的對稱軸時(shí)不能說是它的直徑,而必須說是直徑所在的直線。像這樣的細(xì)節(jié)我們必須在平時(shí)就要引起足夠的重視并且牢固把握,只有這樣才是學(xué)好幾何的基礎(chǔ)。
(二)善于歸納總結(jié),熟悉常見的特征圖形。
(三)熟悉解題的常見著眼點(diǎn),常用輔助線作法,把大新問題細(xì)化成各個(gè)小新問題,從而各個(gè)擊破,解決新問題。在我們對一個(gè)新問題還沒有切實(shí)的解決方法時(shí),要善于捕捉可能會(huì)幫助你解決新問題的著眼點(diǎn)。例如,在一個(gè)非直角三角形中出現(xiàn)了非凡的角,那你應(yīng)該馬上想到作垂直構(gòu)造直角三角形。因?yàn)榉欠步侵挥性诜欠残沃胁艜?huì)發(fā)揮功能。再比如,在圓中出現(xiàn)了直徑,馬上就應(yīng)該想到連出90°的圓周角。碰到梯形的計(jì)算或者證實(shí)新問題時(shí),首先我們心里必須清楚碰到梯形新問題都有哪些輔助線可作,然后再具體新問題具體分析。
(四)考慮新問題全面也是學(xué)好幾何至關(guān)重要的一點(diǎn)。在幾何的學(xué)習(xí)中,經(jīng)常會(huì)碰到分兩種或多種情況來解的新問題,那么我們怎么能更好的解決這部分新問題呢?這要靠平時(shí)的點(diǎn)滴積累,對比較常見的分情況考慮的新問題要熟悉。例如說到等腰三角形的角要考慮是頂角還是底角,說到等腰三角形的邊要考慮是底還是腰,說到過一點(diǎn)作直線和圓相交,要考慮點(diǎn)和圓有三種位置關(guān)系,所以要畫出三種圖形。這樣的情況在幾何的學(xué)習(xí)中是非經(jīng)常見的,在這里不一一列舉,但大家在做題時(shí)一定要注重考慮到是否要分情況考慮。很多時(shí)候是你平常注重積累了,你心里有了這個(gè)新問題,你作題時(shí)才會(huì)自然而然的想到。
猜你感興趣:
2.名師教導(dǎo)如何學(xué)好初中數(shù)學(xué)幾何
4.如何學(xué)好高中數(shù)學(xué)的立體幾何