初中數(shù)學(xué)教學(xué)的策略有哪些
初中數(shù)學(xué)教學(xué)的策略有哪些
不只學(xué)習(xí)上講究策略教師在教學(xué)上也是要講究策略的,那么初中數(shù)學(xué)教學(xué)的策略有哪些?以下是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)教學(xué)的策略的資料,希望可以幫到你!
初中數(shù)學(xué)教學(xué)的策略1
結(jié)合初中數(shù)學(xué)大綱。
就初中數(shù)學(xué)教材進(jìn)行數(shù)學(xué)思想方法的教學(xué)研究,要通過(guò)對(duì)教材完整的分析和研究,理清和把握教材的體系和脈絡(luò),統(tǒng)攬教材全局,高屋建瓴。然后,建立各類概念、知識(shí)點(diǎn)或知識(shí)單元之間的界面關(guān)系,歸納和揭示其特殊性質(zhì)和內(nèi)在的一般規(guī)律。例如,在“因式分解”這一章中,我們接觸到許多數(shù)學(xué)方法—提公因式法、運(yùn)用公式法、分組分解法、十字相乘法等。這是學(xué)習(xí)這一章知識(shí)的重點(diǎn),只要我們學(xué)會(huì)了這些方法,按知識(shí)──方法──思想的順序提煉數(shù)學(xué)思想方法,就能運(yùn)用它們?nèi)ソ鉀Q成千上萬(wàn)分解多項(xiàng)式因式的問(wèn)題。又如:結(jié)合初中代數(shù)的消元、降次、配方、換元方法,以及分類、變換、歸納、抽象和數(shù)形結(jié)合等方法性思想,進(jìn)一步確定數(shù)學(xué)知識(shí)與其思想方法之間的結(jié)合點(diǎn),建立一整套豐富的教學(xué)范例或模型,最終形成一個(gè)活動(dòng)的知識(shí)與思想互聯(lián)網(wǎng)絡(luò)。
初中數(shù)學(xué)教學(xué)的策略2
以數(shù)學(xué)知識(shí)為載體
將數(shù)學(xué)思想方法有機(jī)地滲透入教學(xué)計(jì)劃和教案內(nèi)容之中 教學(xué)計(jì)劃的制訂應(yīng)體現(xiàn)數(shù)學(xué)思想方法教學(xué)的綜合考慮,要明確每一階段的載體內(nèi)容、教學(xué)目標(biāo)、展開(kāi)步驟、教學(xué)程序和操作要點(diǎn)。數(shù)學(xué)教案則要就每一節(jié)課的概念、命題、公式、法則以至單元結(jié)構(gòu)等教學(xué)過(guò)程進(jìn)行滲透思想方法的具體設(shè)計(jì)。要求通過(guò)目標(biāo)設(shè)計(jì)、創(chuàng)設(shè)情境、程序演化、歸納總結(jié)等關(guān)鍵環(huán)節(jié),在知識(shí)的發(fā)生和運(yùn)用過(guò)程中貫徹?cái)?shù)學(xué)思想方法,形成數(shù)學(xué)知識(shí)、方法和思想的一體化。
應(yīng)充分利用數(shù)學(xué)的現(xiàn)實(shí)原型作為反映數(shù)學(xué)思想方法的基礎(chǔ)。數(shù)學(xué)思想方法是對(duì)數(shù)學(xué)問(wèn)題解決或構(gòu)建所做的整體性考慮,它來(lái)源于現(xiàn)實(shí)原型又高于現(xiàn)實(shí)原型,往往借助現(xiàn)實(shí)原型使數(shù)學(xué)思想方法得以生動(dòng)地表現(xiàn),有利于對(duì)其深人理解和把握。例如:分類討論的思想方法始終貫穿于整個(gè)數(shù)學(xué)教學(xué)中。在教學(xué)中要引導(dǎo)學(xué)生對(duì)所討論的對(duì)象進(jìn)行合理分類(分類時(shí)要做到不重復(fù)、不遺漏、標(biāo)準(zhǔn)統(tǒng)一、分層不越級(jí)),然后逐類討論(即對(duì)各類問(wèn)題詳細(xì)討論、逐步解決),最后歸納總結(jié)。教師要幫助學(xué)生掌握好分類的方法原則,形成分類思想。
數(shù)學(xué)思想方法的滲透應(yīng)根據(jù)教學(xué)計(jì)劃有步驟地進(jìn)行。一般在知識(shí)的概念形成階段導(dǎo)入概念型數(shù)學(xué)思想,如方程思想、相似思想、已知與未知互相轉(zhuǎn)化的思想、特殊與一般互相轉(zhuǎn)化的思想等等。在知識(shí)的結(jié)論、公式、法則等規(guī)律的推導(dǎo)階段,要強(qiáng)調(diào)和灌輸思維方法,如解方程的如何消元降次、函數(shù)的數(shù)與形的轉(zhuǎn)化、判定兩個(gè)三角形相似有哪些常用思路等。在知識(shí)的總結(jié)階段或新舊知識(shí)結(jié)合部分,要選配結(jié)構(gòu)型的數(shù)學(xué)思想,如函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉(zhuǎn)化,分?jǐn)?shù)討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化。在所有數(shù)學(xué)建構(gòu)及問(wèn)題的處理方面,注意體現(xiàn)其根本思想,如運(yùn)用同解原理解一元一次方程,應(yīng)注意為簡(jiǎn)便而采取的移項(xiàng)法則。
初中數(shù)學(xué)教學(xué)的策略3
重視課堂教學(xué)實(shí)踐
在知識(shí)的引進(jìn)、消化和應(yīng)用過(guò)程中促使學(xué)生領(lǐng)悟和提煉數(shù)學(xué)思想方法數(shù)學(xué)知識(shí)發(fā)生的過(guò)程也是其思想方法產(chǎn)生的過(guò)程。在此過(guò)程中,要向?qū)W生提供豐富的、典型的以及正確的直觀背景材料,創(chuàng)設(shè)使認(rèn)知主體與客體之間激發(fā)作用的環(huán)境和條件,通過(guò)對(duì)知識(shí)發(fā)生過(guò)程的展示,使學(xué)生的思維和經(jīng)驗(yàn)全部投人到接受問(wèn)題、分析問(wèn)題和感悟思想方法的挑戰(zhàn)之中,從而主動(dòng)構(gòu)建科學(xué)的認(rèn)知結(jié)構(gòu),將數(shù)學(xué)思想方法與數(shù)學(xué)知識(shí)融匯成一體,最終形成獨(dú)立探索分析、解決問(wèn)題的能力。
概念既是思維的基礎(chǔ),又是思維的結(jié)果。恰當(dāng)?shù)卣故酒湫纬傻倪^(guò)程,拉長(zhǎng)被壓縮了的“知識(shí)鏈”,是對(duì)數(shù)學(xué)抽象與數(shù)學(xué)模型方法進(jìn)行點(diǎn)悟的極好素材和契機(jī)。在概念的引進(jìn)過(guò)程中,應(yīng)注意:①解釋概念產(chǎn)生的背景,讓學(xué)生了解定義的合理性和必要性;②揭示概念的形成過(guò)程,讓學(xué)生綜合概念定義的本質(zhì)屬性;③鞏固和加深概念理解,讓學(xué)生在變式和比較中活化思維。在規(guī)律(定理、公式、法則等)的揭示過(guò)程中,教師應(yīng)注意灌輸數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索性思維能力,并引導(dǎo)學(xué)生通過(guò)感性的直觀背景材料或已有的知識(shí)發(fā)現(xiàn)規(guī)律,不過(guò)早地給結(jié)論,講清抽象、概括或證明的過(guò)程,充分地向?qū)W生展現(xiàn)自己是如何思考的,使學(xué)生領(lǐng)悟蘊(yùn)含其中的思想方法。
初中數(shù)學(xué)教學(xué)的策略4
通過(guò)范例和解題教學(xué),綜合運(yùn)用數(shù)學(xué)思想方法
一方面要通過(guò)解題和反思活動(dòng),從具體數(shù)學(xué)問(wèn)題和范例中總結(jié)歸納解題方法,并提煉和抽象成數(shù)學(xué)思想;另一方面在解題過(guò)程中,充分發(fā)揮數(shù)學(xué)思想方法對(duì)發(fā)現(xiàn)解題途徑的定向、聯(lián)想和轉(zhuǎn)化功能,舉一反三,觸類旁通,以數(shù)學(xué)思想觀點(diǎn)為指導(dǎo),靈活運(yùn)用數(shù)學(xué)知識(shí)和方法分析問(wèn)題、解決問(wèn)題。
范例教學(xué)通過(guò)選擇具有典型性、啟發(fā)性、創(chuàng)造性和審美性的例題和練習(xí)進(jìn)行。要注意設(shè)計(jì)具有探索性的范例和能從中抽象一般和特殊規(guī)律的范例,在對(duì)其分析和思考的過(guò)程中展示數(shù)學(xué)思想和具有代表性的數(shù)學(xué)方法,提高學(xué)生的思維能力。例如,對(duì)某些問(wèn)題,要引導(dǎo)學(xué)生盡可能運(yùn)用多種方法,從各條途徑尋求答案,找出最優(yōu)方法,培養(yǎng)學(xué)生的變通性;對(duì)某些問(wèn)題可以進(jìn)行由簡(jiǎn)到繁、由特殊到一般的推論,讓學(xué)生大膽聯(lián)系和猜想,培養(yǎng)其思維的廣闊性;對(duì)某些問(wèn)題可以分析其特殊性,克服慣性思維束縛,培養(yǎng)學(xué)生思維的靈活性;對(duì)一些條件、因素較多的問(wèn)題,要引導(dǎo)學(xué)生全面分析、系統(tǒng)綜合各個(gè)條件,得出正確結(jié)論,培養(yǎng)其橫向思維等等。此外,還要引導(dǎo)學(xué)生通過(guò)解題以后的反思,優(yōu)化解題過(guò)程,總結(jié)解題經(jīng)驗(yàn),提煉數(shù)學(xué)思想方法。
猜你喜歡:
2.初中數(shù)學(xué)課堂全等三角形教學(xué)案例分析