不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 教學(xué)方法 > 初中數(shù)學(xué)幾何證明題怎么學(xué)

初中數(shù)學(xué)幾何證明題怎么學(xué)

時(shí)間: 欣怡1112 分享

初中數(shù)學(xué)幾何證明題怎么學(xué)

  幾何證明題難做,是許多學(xué)生在學(xué)習(xí)中的共識(shí),這里面有很多因素,有主觀的、也有客觀的。學(xué)習(xí)不得法,沒有適當(dāng)?shù)慕忸}思路則是其中的一個(gè)重要原因。掌握證明題的一般思路、探討證題過程中的數(shù)學(xué)思維、總結(jié)證題的基本規(guī)律是求解幾何證明題的關(guān)鍵。下面是學(xué)習(xí)啦小編分享給大家的學(xué)好初中幾何的方法的資料,希望大家喜歡!

  學(xué)好初中幾何的方法

  一、多看

  主要是指認(rèn)真閱讀數(shù)學(xué)課本。許多同學(xué)沒有養(yǎng)成這個(gè)習(xí)慣,把課本當(dāng)成練習(xí)冊(cè);也有一部分同學(xué)不知怎么閱讀,這是他們學(xué)不好數(shù)學(xué)的主要原因之一。一般地,閱讀可以分以下三個(gè)層次:

  1.課前預(yù)習(xí)閱讀。預(yù)習(xí)課文時(shí),要準(zhǔn)備一張紙、一支筆,將課本中的關(guān)鍵詞語、產(chǎn)生的疑問和需要思考的問題隨手記下,對(duì)定義、公理、公式、法則等,可以在紙上進(jìn)行簡單的復(fù)述。重點(diǎn)知識(shí)可在課本上批、劃、圈、點(diǎn)。這樣做,不但有助于理解課文,還能幫助我們?cè)谡n堂上集中精力聽講,有重點(diǎn)地聽講。

  2.課堂閱讀。預(yù)習(xí)時(shí),我們只對(duì)所要學(xué)的教材內(nèi)容有了一個(gè)大概的了解,不一定都已深透理解和消化吸收,因此有必要對(duì)預(yù)習(xí)時(shí)所做的標(biāo)記和批注,結(jié)合老師的講授,進(jìn)一步閱讀課文,從而掌握重點(diǎn)、關(guān)鍵,解決預(yù)習(xí)中的疑難問題。

  3.課后復(fù)習(xí)閱讀。課后復(fù)習(xí)是課堂學(xué)習(xí)的延伸,既可解決在預(yù)習(xí)和課堂中仍然沒有解決的問題,又能使知識(shí)系統(tǒng)化,加深和鞏固對(duì)課堂學(xué)習(xí)內(nèi)容的理解和記憶。一節(jié)課后,必須先閱讀課本,然后再做作業(yè);一個(gè)單元后,應(yīng)全面閱讀課本,對(duì)本單元的內(nèi)容前后聯(lián)系起來,進(jìn)行綜合概括,寫出知識(shí)小結(jié),進(jìn)行查缺補(bǔ)漏。

  二、多想

  主要是指養(yǎng)成思考的習(xí)慣,學(xué)會(huì)思考的方法。獨(dú)立思考是學(xué)習(xí)數(shù)學(xué)必須具備的能力,同學(xué)們?cè)趯W(xué)習(xí)時(shí),要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數(shù)學(xué)知識(shí),歸納總結(jié)數(shù)學(xué)規(guī)律,靈活解決數(shù)學(xué)問題,這樣才能把老師講的、課本上寫的變成自己的知識(shí)。

  三、多做

  主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂?。做?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識(shí);其次是初步啟發(fā)靈活應(yīng)用知識(shí)和培養(yǎng)獨(dú)立思考的能力;第三是融會(huì)貫通,把不同內(nèi)容的數(shù)學(xué)知識(shí)溝通起來。在做習(xí)題時(shí),要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結(jié),通過練習(xí)加深對(duì)知識(shí)的理解。

  四、多問

  是指在學(xué)習(xí)過程中要善于發(fā)現(xiàn)和提出疑問,這是衡量一個(gè)學(xué)生學(xué)習(xí)是否有進(jìn)步的重要標(biāo)志之一。有經(jīng)驗(yàn)的老師認(rèn)為:能夠發(fā)現(xiàn)和提出疑問的學(xué)生才更有希望獲得學(xué)習(xí)的成功;反之,那種一問三不知,自己又提不出任何問題的學(xué)生,是無法學(xué)好數(shù)學(xué)的。那么,怎樣才能發(fā)現(xiàn)和提出問題呢?第一,要深入觀察,逐步培養(yǎng)自己敏銳的觀察能力;第二,要肯動(dòng)腦筋,不愿意動(dòng)腦筋,不去思考,當(dāng)然發(fā)現(xiàn)不了什么問題,也提不出疑問。發(fā)現(xiàn)問題后,經(jīng)過自己的獨(dú)立思考,問題仍得不到解決時(shí),應(yīng)當(dāng)虛心向別人請(qǐng)教,向老師、同學(xué)、家長,向一切在這個(gè)問題上比自己強(qiáng)的人請(qǐng)教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學(xué)習(xí)的人,才有可能成為真正的學(xué)習(xí)上的強(qiáng)者。

  學(xué)習(xí)方法是靈活多樣、因人而異的,能不斷改進(jìn)自己的學(xué)習(xí)方法,是你學(xué)習(xí)能力不斷提高的表現(xiàn)。

  初中幾何題證明思路總結(jié)

  一、證明兩線段相等

  1.兩全等三角形中對(duì)應(yīng)邊相等。

  2.同一三角形中等角對(duì)等邊。

  3.等腰三角形頂角的平分線或底邊的高平分底邊。

  4.平行四邊形的對(duì)邊或?qū)蔷€被交點(diǎn)分成的兩段相等。

  5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。

  6.線段垂直平分線上任意一點(diǎn)到線段兩段距離相等。

  7.角平分線上任一點(diǎn)到角的兩邊距離相等。

  8.過三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。

  9.同圓(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等圓心角、圓周角所對(duì)的弦相等。

  10.圓外一點(diǎn)引圓的兩條切線的切線長相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。

  11.兩前項(xiàng)(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。

  12.兩圓的內(nèi)(外)公切線的長相等。

  13.等于同一線段的兩條線段相等。

  二、證明兩角相等

  1.兩全等三角形的對(duì)應(yīng)角相等。

  2.同一三角形中等邊對(duì)等角。

  3.等腰三角形中,底邊上的中線(或高)平分頂角。

  4.兩條平行線的同位角、內(nèi)錯(cuò)角或平行四邊形的對(duì)角相等。

  5.同角(或等角)的余角(或補(bǔ)角)相等。

  6.同圓(或圓)中,等弦(或弧)所對(duì)的圓心角相等,圓周角相等,弦切角等于它所夾的弧對(duì)的圓周角。

  7.圓外一點(diǎn)引圓的兩條切線,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  8.相似三角形的對(duì)應(yīng)角相等。

  9.圓的內(nèi)接四邊形的外角等于內(nèi)對(duì)角。10.等于同一角的兩個(gè)角相等

  三、證明兩直線平行

  1.垂直于同一直線的各直線平行。

  2.同位角相等,內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。

  3.平行四邊形的對(duì)邊平行。

  4.三角形的中位線平行于第三邊。

  5.梯形的中位線平行于兩底。

  6.平行于同一直線的兩直線平行。

  7.一條直線截三角形的兩邊(或延長線)所得的線段對(duì)應(yīng)成比例,則這條直線平行于第三邊。

  四、證明兩直線互相垂直

  1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。

  2.三角形中一邊的中線若等于這邊一半,則這一邊所對(duì)的角是直角。

  3.在一個(gè)三角形中,若有兩個(gè)角互余,則第三個(gè)角是直角。

  4.鄰補(bǔ)角的平分線互相垂直。

  5.一條直線垂直于平行線中的一條,則必垂直于另一條。

  6.兩條直線相交成直角則兩直線垂直。

  7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。

  8.利用勾股定理的逆定理。

  9.利用菱形的對(duì)角線互相垂直。

  10.在圓中平分弦(或弧)的直徑垂直于弦。

  11.利用半圓上的圓周角是直角。

  五、證明線段的和、差、倍、分

  1.作兩條線段的和,證明與第三條線段相等。

  2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。

  3.延長短線段為其二倍,再證明它與較長的線段相等。

  4.取長線段的中點(diǎn),再證其一半等于短線段。

  5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。

  六、證明角的和、差、倍、分

  1.作兩個(gè)角的和,證明與第三角相等。

  2.作兩個(gè)角的差,證明余下部分等于第三角。

  3.利用角平分線的定義。

  4.三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

  七、證明兩線段不等

  1.同一三角形中,大角對(duì)大邊。

  2.垂線段最短。

  3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。

  4.在兩個(gè)三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。

  5.同圓或等圓中,弧大弦大,弦心距小。

  6.全量大于它的任何一部分。

  八、證明兩角不等

  1.同一三角形中,大邊對(duì)大角。

  2.三角形的外角大于和它不相鄰的任一內(nèi)角。

  3.在兩個(gè)三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。

  4.同圓或等圓中,弧大則圓周角、圓心角大。

  5.全量大于它的任何一部分。

  九、證明比例式或等積式

  1.利用相似三角形對(duì)應(yīng)線段成比例。

  2.利用內(nèi)外角平分線定理。

  3.平行線截線段成比例。

  4.直角三角形中的比例中項(xiàng)定理即射影定理。

  5.與圓有關(guān)的比例定理--相交弦定理、切割線定理及其推論。

  6.利用比利式或等積式化得。

  幾何證明題解題技巧審題

  很多學(xué)生在把一個(gè)題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可取。我們應(yīng)該逐個(gè)條件的讀,給的條件有什么用,在腦海中打個(gè)問號(hào),再對(duì)應(yīng)圖形來對(duì)號(hào)入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。

  標(biāo)記

  這里的記有兩層意思。第一層意思是要標(biāo)記,在讀題的時(shí)候每個(gè)條件,你要在所給的圖形中標(biāo)記出來。如給出對(duì)邊相等,就用邊相等的符號(hào)來表示。第二層意思是要牢記,題目給出的條件不僅要標(biāo)記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來。

  引申

  難度大一點(diǎn)的題目往往把一些條件隱藏起來,所以我們要會(huì)引申,那么這里的引申就需要平時(shí)的積累,平時(shí)在課堂上學(xué)的基本知識(shí)點(diǎn)掌握牢固,平時(shí)訓(xùn)練的一些特殊圖形要熟記,在審題與記的時(shí)候要想到由這些條件你還可以得到哪些結(jié)論(就像電腦一樣,你一點(diǎn)擊開始立刻彈出對(duì)應(yīng)的菜單),然后在圖形旁邊標(biāo)注,雖然有些條件在證明時(shí)可能用不上,但是這樣長期的積累,便于以后難題的學(xué)習(xí)。

  分析綜合法

  分析綜合法也就是要逆向推理,從題目要你證明的結(jié)論出發(fā)往回推理。看看結(jié)論是要證明角相等,還是邊相等……

  如證明角相等的方法有1.對(duì)頂角相等2.平行線里同位角相等、內(nèi)錯(cuò)角相等3.余角、補(bǔ)角定理4.角平分線定義5.等腰三角形6.全等三角形的對(duì)應(yīng)角等等方法。然后結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會(huì)在第三步引申出的條件和題目中出現(xiàn),這時(shí)再把這些條件綜合在一起,很條理的寫出證明過程。

  歸納總結(jié)

  很多同學(xué)把一個(gè)題做出來,長長的松了一口氣,接下來去做其他的,這個(gè)也是不可取的,應(yīng)該花上幾分鐘的時(shí)間,回過頭來找找所用的定理、公理、定義,重新審視這個(gè)題,總結(jié)這個(gè)題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。

  以上是常見證明題的解題思路,當(dāng)然有一些的題設(shè)計(jì)的很巧妙,往往需要我們?cè)谔罴虞o助線,分析已知、求證與圖形,探索證明的思路。對(duì)于證明題,有三種思考方式:

  正向思維

  對(duì)于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。

  逆向思維

  顧名思義,就是從相反的方向思考問題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識(shí)點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對(duì)于初中幾何證明題,最好用的方法就是用逆向思維法。

  如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個(gè)三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個(gè)條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學(xué)們一定要試一試。

  正逆結(jié)合

  對(duì)于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對(duì)角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無不勝。

猜你喜歡:

1.初中學(xué)霸的高效學(xué)習(xí)方法

2.初中數(shù)學(xué)學(xué)習(xí)方法總結(jié)

3.初中學(xué)霸的學(xué)習(xí)方法有哪些

4.2017初中生的最佳學(xué)習(xí)方法

5.初中數(shù)學(xué)幾何題解題技巧

3703442