人教版六年級(jí)下冊(cè)圓柱的體積教案
人教版六年級(jí)下冊(cè)圓柱的體積教案
《圓柱的體積》是在學(xué)生初步認(rèn)識(shí)了圓柱體的基礎(chǔ)上,進(jìn)一步研究圓柱體的特征,讓學(xué)生比較深入地研究立體幾何圖形,是學(xué)生發(fā)展空間觀念的又一次飛躍。下面學(xué)習(xí)啦小編給你分享人教版六年級(jí)下冊(cè)圓柱的體積教案,歡迎閱讀。
人教版六年級(jí)下冊(cè)圓柱的體積教案
教學(xué)內(nèi)容:
P19-20頁例5、例6及補(bǔ)充例題,完成“做一做”及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長(zhǎng)方體的體積公式是什么?正方體呢?(長(zhǎng)方體的體積=長(zhǎng)×寬×高,長(zhǎng)方體和正方體體積的統(tǒng)一公式“底面積×高”,即長(zhǎng)方體的體積=底面積×高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個(gè)曲面圖形轉(zhuǎn)化成以前學(xué)的長(zhǎng)方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運(yùn)用轉(zhuǎn)化的思想同學(xué)們猜猜會(huì)轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長(zhǎng)方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形——課件演示)
(2)由于我們分的不夠細(xì),所以看起來還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。(課件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)
反復(fù)播放這個(gè)過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長(zhǎng)方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學(xué)生明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。(長(zhǎng)方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
人教版六年級(jí)下冊(cè)圓柱的體積教學(xué)反思
1、重視先猜想、再驗(yàn)證的思路來引入教學(xué)。
新課伊始,課件出示三個(gè)幾何體的底面和高,引導(dǎo)學(xué)生來觀察這三個(gè)幾何體,發(fā)現(xiàn)它們的底面積都相等,高也都相等。進(jìn)一步引導(dǎo)思考:想一想,長(zhǎng)方體和正方體的體積相等嗎?為什么?猜一猜,圓柱的體積與長(zhǎng)方體和正方體的體積相等嗎?學(xué)生認(rèn)同,并提出等于底面積乘高。教師再次拋出問題:這僅僅是猜想,那用什么辦法驗(yàn)證呢?今天這節(jié)課就來研究這個(gè)問題。
2、重視利用知識(shí)、方法的遷移來展開教學(xué)。
本課的例題探索,有一個(gè)目標(biāo)就是使學(xué)生在活動(dòng)中進(jìn)一步體會(huì)“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識(shí)解決新問題的能力,發(fā)展空間觀念和初步的推理能力。因此,筆者在執(zhí)教時(shí),根據(jù)陳星月的回答順勢(shì)復(fù)習(xí)了圓面積的推導(dǎo):把一個(gè)圓平均分成16份、32份、64份或更多,剪開后可以拼成近似的長(zhǎng)方形,圓的面積就可以轉(zhuǎn)化成長(zhǎng)方形的面積進(jìn)行計(jì)算。接著提問:那么,受這個(gè)啟發(fā),那我們能不能將圓柱轉(zhuǎn)化成長(zhǎng)方體來計(jì)算體積呢?首先實(shí)物演示圓柱切拼的過程。把圓柱的底面平均分成16份,切開后可以拼成一個(gè)近似的長(zhǎng)方體。然后進(jìn)行課件演示,發(fā)現(xiàn):把圓柱的底面平均分的份數(shù)越多,拼成的幾何體會(huì)越來越接近長(zhǎng)方體。這樣有利于激活學(xué)生已有的知識(shí)和經(jīng)驗(yàn),使學(xué)生充分體會(huì)圓柱體積公式推導(dǎo)過程的合理性,并不斷豐富對(duì)圖形轉(zhuǎn)化方法的感受。
3、重視通過核心問題的討論和板書的精當(dāng)設(shè)計(jì)來突出重點(diǎn)、突破難點(diǎn)。
核心問題即指中心問題,是諸多問題中相對(duì)最具思維價(jià)值、最利于學(xué)生思考及最能揭示事物本質(zhì)的問題。它是在教學(xué)過程中,為學(xué)生更好地理解和掌握新知、更好地積累學(xué)習(xí)經(jīng)驗(yàn)和方法,針對(duì)具體教學(xué)內(nèi)容,提煉而成的教學(xué)中心問題。就如圓柱體積的計(jì)算而言,在這節(jié)課的教學(xué)過程中,教師抓住“圓柱的體積可能跟圓柱的哪些條件有關(guān)呢?”“拼成的長(zhǎng)方體與原來的圓柱有什么關(guān)系?”“要計(jì)算圓柱的體積一般要知道哪些條件?”這三個(gè)問題,使學(xué)生在獲取圓柱體積公式的同時(shí)又了解了體積公式的由來,并及時(shí)總結(jié)了思考問題的方法。核心問題也可以指為了探究知識(shí)的來龍去脈而在關(guān)鍵環(huán)節(jié)提出的指向性問題。
當(dāng)然,需要注意和改進(jìn)的地方是:書寫格式的規(guī)范。
猜你感興趣的:
1.小學(xué)六年級(jí)下冊(cè)數(shù)學(xué)圓柱的體積教案
2.小學(xué)六年級(jí)下冊(cè)數(shù)學(xué)圓柱的表面積教案
3.六年級(jí)下冊(cè)數(shù)學(xué)圓柱的認(rèn)識(shí)教案