分數(shù)與除法教學(xué)反思范文
分數(shù)與除法教學(xué)反思范文
分數(shù)與除法的關(guān)系是在學(xué)生學(xué)習(xí)了分數(shù)的意義后進行教學(xué)的,目的是使學(xué)生初步知道兩個整數(shù)相除,不論是被除數(shù)小于、等于、或大于除數(shù),都可以用分數(shù)來表示它們的商。下文是學(xué)習(xí)啦小編為大家整理的分數(shù)與除法教學(xué)反思范文,歡迎閱讀!
分數(shù)與除法教學(xué)反思范文篇一
“數(shù)學(xué)教學(xué)要從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),使學(xué)生感到數(shù)學(xué)就在自已的身邊,在生活中學(xué)數(shù)學(xué)。使學(xué)生認識學(xué)習(xí)數(shù)學(xué)的重要性,提高學(xué)習(xí)數(shù)學(xué)的興趣”.分數(shù)與除法,對于小學(xué)生來說,是一個比較抽象的內(nèi)容。而在小學(xué)階段數(shù)學(xué)知識之所以能被學(xué)生理解和掌握,絕不僅僅是知識演繹的結(jié)果,而是具體的模型、圖形、情景等知識相互作用的結(jié)果。所以我在設(shè)計《分數(shù)與除法》這一課時,從以下兩方面考慮:
1.以解決問題入手,感受分數(shù)的價值。
從分餅的問題開始引入,讓學(xué)生在解決問題的過程中,感受當商不能用整數(shù)表示時,可以用分數(shù)來表示商。本課主要從兩個層面展開,一是借助學(xué)生原有的知識,用分數(shù)的意義來解決把1個餅平均分成若干份,商用分數(shù)來表示;二是借助實物操作,理解幾個餅平均分成若干份,也可以用分數(shù)來表示商。而這兩個層面展開,均從問題解決的角度來設(shè)計的。
2.分數(shù)意義的拓展與除法之間關(guān)系的理解同步。
當用分數(shù)表示整數(shù)除法的商時,用除數(shù)作分母,用被除數(shù)作分子。反過來,一個分數(shù)也可以看作兩個數(shù)相除??梢岳斫鉃榘?ldquo;1”平均分成4份,表示這樣的3份;也可以理解為把“3”平均分成4份,表示這樣的1份。也就是說,分數(shù)與除法之間的關(guān)系的理解、建立過程,實質(zhì)上是與分數(shù)的意義的拓展同步的。
教學(xué)之后,再來反思自己的教學(xué),發(fā)現(xiàn)就小學(xué)階段的數(shù)學(xué)知識存儲于學(xué)生腦海里的狀態(tài)而言,除了抽象性的之外,應(yīng)當是抽象與具體可以轉(zhuǎn)換的數(shù)學(xué)知識。整節(jié)課教學(xué)有以下特點:
1.提供豐富的素材,經(jīng)歷“數(shù)學(xué)化”過程。
分數(shù)與除法關(guān)系的理解,是以具體可感的實物、圖片為媒介,用動手操作為方式,在豐富的表象的支撐下生成數(shù)學(xué)知識,是一個不斷豐富感性積累,并逐步抽象、建模的過程。在這個過程中,關(guān)注了以下幾個方面:一是提供豐富數(shù)學(xué)學(xué)習(xí)材料,二是在充分使用這些材料的基礎(chǔ)上,學(xué)生逐步完善自己發(fā)現(xiàn)的結(jié)論,從文字表達、到文字表示的等式再到用字母表示,經(jīng)歷從復(fù)雜到簡潔,從生活語言到數(shù)學(xué)語言的過程,也是經(jīng)歷了一個具體到抽象的過程。
2.問題寓于方法,內(nèi)容承載思想。
數(shù)學(xué)學(xué)習(xí)是一個問題解決的過程,方法自然就寓于其中;學(xué)習(xí)內(nèi)容則承載著數(shù)學(xué)思想。也就是說,數(shù)學(xué)知識本身僅僅是我們學(xué)習(xí)數(shù)學(xué)的一方面,更為重要的是以知識為載體滲透數(shù)學(xué)思想方法。
就分數(shù)與除法而言,筆者以為如果僅僅為得出一個關(guān)系式而進行教學(xué),僅僅是抓住了冰山一角而已。實際上,借助于這個知識載體,我們還要關(guān)注蘊藏其中的歸納、比較等思想方法,以及如何運用已有知識解決問題的方法,從而提高學(xué)生的數(shù)學(xué)素養(yǎng)。
分數(shù)與除法教學(xué)反思范文篇二
這節(jié)課的重點是理解分數(shù)與除法的關(guān)系,難點是用除法意義理解分數(shù)意義。讓學(xué)生通過本節(jié)課的學(xué)習(xí),理解分數(shù)與除法的關(guān)系,會用分數(shù)來表示兩數(shù)相除的商,能運用分數(shù)與除法的關(guān)系,解決一些簡單的問題。
在引入課題之前,先復(fù)習(xí)舊知。課件呈現(xiàn)幾道簡單的口算題,以喚醒學(xué)生對整數(shù)除法的記憶,為探索新知做鋪墊。在探索新知時,課件呈現(xiàn)豬八戒化齋的故事,從想象中每人2個餅,到一張餅,把一張餅平均分給4個人,每人能得到幾塊?有了剛才的復(fù)習(xí)知識進行鋪墊、遷移,很容易能用算式1÷4來計算,學(xué)生很快會說出1/4,這時我會再提問:為什么是1/4?你是怎么分得?學(xué)生用準備的圓片分一分;接著出示:豬八戒又化了3張餅,每人分多少張?學(xué)生又拿出學(xué)具自主探究,再演示。學(xué)生一步步經(jīng)歷了分得過程,對分數(shù)的意義就理解得更好了,也就明白了為什么是3/4。
當用分數(shù)表示整數(shù)除法的商時,用除數(shù)作分母,用被除數(shù)作分子。反過來,一個分數(shù)也可以看作兩個數(shù)相除。可以理解為把“1”平均分成4份,表示這樣的3份;也可以理解為把“3”平均分成4份,表示這樣的1份。也就是說,分數(shù)與除法之間的關(guān)系的理解、建立過程,實質(zhì)上是與分數(shù)的意義的拓展同步的。
教學(xué)之后,再來反思自己的教學(xué),發(fā)現(xiàn)就小學(xué)階段的數(shù)學(xué)知識存儲于學(xué)生腦海里的狀態(tài)而言,除了抽象性的之外,應(yīng)當是抽象與具體可以轉(zhuǎn)換的數(shù)學(xué)知識。
分數(shù)與除法教學(xué)反思范文篇三
分數(shù)與除法的關(guān)系的理解與掌握,不但可以加深對分數(shù)意義的理解,而且為后面學(xué)習(xí)假分數(shù)、帶分數(shù)、分數(shù)的基本性質(zhì)以及比、百分數(shù)打下基礎(chǔ),所以,分數(shù)與除法的關(guān)系在整個教材中起到承上啟下的重要作用。 新課標指出:“學(xué)生的教學(xué)學(xué)習(xí)內(nèi)容應(yīng)當是現(xiàn)實的,有意義的,富有挑戰(zhàn)性的,這些內(nèi)容要有利于學(xué)生主動地進行觀察,猜測,驗證,推測與交流等教學(xué)活動.”這說明創(chuàng)設(shè)有效的學(xué)習(xí)情境,可以引導(dǎo)學(xué)生開展“自主,探索,合作”的學(xué)習(xí)活動,促進學(xué)生主動的參與。” 所以,在導(dǎo)入新課環(huán)節(jié),我有意設(shè)計了兩道除法計算題: 8÷9= 4÷7=
學(xué)生一看是這樣兩道除法算式,都松了口氣,說:“這么簡單的兩道題啊!”于是我在班上開展了男女兩組比賽,男生算第一題,女生算第二題。一聲令下,男生埋頭算起來,思維敏捷的胡雯欣早就知道了答案,根本沒有動筆,我示意她不要說出答案。我轉(zhuǎn)了一圈,大部分學(xué)生在已經(jīng)做好的學(xué)生的提示下都已經(jīng)有了答案,只有個別男生還在計算。
匯報后,我引發(fā)學(xué)生思考:8÷9= 0.88……和8÷9= 8/9有什么區(qū)別?學(xué)生最直接的回答是:用循環(huán)小數(shù)表示沒有用分數(shù)表示快捷、簡便。這個導(dǎo)入使學(xué)生明白兩個數(shù)相除可以用分數(shù)來表示商,為進一步學(xué)習(xí)分數(shù)與除法的關(guān)系打下基礎(chǔ)。
之后,再出示兩個數(shù)相除的算式,學(xué)生都能夠很快地用分數(shù)來表示商。
以例題中的1÷3=1/3引導(dǎo)學(xué)生發(fā)現(xiàn)除法中的被除數(shù)相當于分數(shù)中的分子,除數(shù)相當于分數(shù)中的分母后,讓學(xué)生把數(shù)字換成它們的名稱:被除數(shù)÷除數(shù)=分子/分母。這時候,我讓學(xué)生用字母a、b表示除法與分數(shù)的關(guān)系。薛龍鳳上黑板認真地寫下:a÷b=a/b,我見這個學(xué)生寫得很認真,馬上表揚了她,并要求學(xué)生為她鼓掌。正當大家都為薛龍鳳高興的時候,我在她寫的算式后面打了個小小的“×”。學(xué)生立刻表示不解,剛剛老師夸了了她,現(xiàn)在怎么又給她判“×”。還是幾個思維靈活的先叫起來,說到:“b不能等于0!”我馬上抓住這個契機,發(fā)問到:“為什么b不能等于0?”班上頓時安靜下來,誰也說不上來原因。這個難點馬上就要突破了,我心里有點小小的激動。我繼續(xù)利用例題中的把1塊蛋糕平均分給3個人,每人分得這塊蛋糕的1/3為例問道:“誰來說說這個分數(shù)中的‘3’表示什么?”有學(xué)生舉手回答:“把蛋糕看做單位‘1’,‘3’表示把蛋糕平均分成的份數(shù)。”“如果把‘3’換成‘0’呢?”學(xué)生終于明白:分母表示把單位“1”平均分成的份數(shù),平均分成“0”份就沒有意義了。就這個“a÷b=a/b(b≠0)”學(xué)生經(jīng)常會忘記,這里的b要強調(diào)不能為0。通過這樣分析,學(xué)生能夠更加深刻地認識到在除法中除數(shù)不能為0,而在分數(shù)中分母不能為0。
我覺得這個環(huán)節(jié)我處理的比較好,不是直接告訴學(xué)生在除法中除數(shù)不能為0,除數(shù)相當于分數(shù)中的分母,所以分母也不能為0。而是通過分析一個分數(shù)的實際意義充分理解分數(shù)中的分母表示平均分的份數(shù),自然不能被平均分成“0”份。
成功之處有,不足之處也有。課后反思之,對分數(shù)與除法的聯(lián)系學(xué)生理解的比較透徹,但是它們之間還有哪些區(qū)別卻并沒有在課堂上引導(dǎo)學(xué)生去發(fā)現(xiàn)和歸納。除法表示兩個數(shù)相除,是一道算式,而分數(shù)是一個數(shù)。這說明課前我對教材的解讀不夠深入,還沒有把握住知識的整體性和連貫性。在以后的教學(xué)中,努力做到對教材的深入理解,同時要多查閱資料,以便對教材知識進行拓展和延伸。
看過" 分數(shù)與除法教學(xué)反思范文"的還看了:
1.小學(xué)數(shù)學(xué)教學(xué)反思