初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納
函數(shù)向來(lái)是初中數(shù)學(xué)的重頭戲,但由于難度較大,不少學(xué)生在考試時(shí),總是在函數(shù)這一塊丟分。為此,以下是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn),希望可以幫到你!
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)則稱(chēng)y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x₁)(x-x₂)[僅限于與x軸有交點(diǎn)A(x₁,0)和B(x₂,0)的拋物線(xiàn)]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。
IV.拋物線(xiàn)的性質(zhì)
1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)x=-b/2a。
對(duì)稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)
2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)
Δ=b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
Δ=b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
Δ=b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),即ax^2+bx+c=0
此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸如下表:
當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線(xiàn)x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線(xiàn)y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.
4.拋物線(xiàn)y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x₂-x₁|
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線(xiàn)y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x₁)(x-x₂)(a≠0).
7.二次函數(shù)知識(shí)很容易與其初中數(shù)學(xué)知識(shí)點(diǎn)歸納它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).
初中數(shù)學(xué)知識(shí)點(diǎn)歸納口訣
有理數(shù)的加法運(yùn)算
同號(hào)兩數(shù)來(lái)相加,絕對(duì)值加不變號(hào)。
異號(hào)相加大減小,大數(shù)決定和符號(hào)。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對(duì)值的大小。
有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運(yùn)算符號(hào)法則
同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。
合并同類(lèi)項(xiàng)
說(shuō)起合并同類(lèi)項(xiàng),法則千萬(wàn)不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
去、添括號(hào)法則
去括號(hào)或添括號(hào),關(guān)鍵要看連接號(hào)。
擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。
括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項(xiàng),完全平方不是它。
完全平方公式
二數(shù)和或差平方,展開(kāi)式它共三項(xiàng)。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
解一元一次方程
先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。
同類(lèi)各項(xiàng)去合并,系數(shù)化“1”還沒(méi)好。
求得未知須檢驗(yàn),回代值等才算了。
解一元一次方程
先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng)。
系數(shù)化1還沒(méi)好,準(zhǔn)確無(wú)誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運(yùn)算。
積化和差是分解,因式分解非運(yùn)算。
因式分解
兩式平方符號(hào)異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號(hào)同,底積2倍坐中央。
因式分解能與否,符號(hào)上面有文章。
同和異差先平方,還要加上正負(fù)號(hào)。
同正則正負(fù)就負(fù),異則需添冪符號(hào)。
因式分解
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項(xiàng)添項(xiàng)去重組。
重組無(wú)望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二*(*公式)
因式分解
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項(xiàng)添項(xiàng)去重組。
對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項(xiàng)式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例
兩數(shù)相除也叫比,兩比相等叫比例。
外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。
分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。
同時(shí)交換內(nèi)外項(xiàng),便要稱(chēng)其為反比。
前后項(xiàng)和比后項(xiàng),比值不變叫合比。
前后項(xiàng)差比后項(xiàng),組成比例是分比。
兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。
前項(xiàng)和比后項(xiàng)和,比值不變叫等比。
初中數(shù)學(xué)常考知識(shí)點(diǎn)歸納
二次根式
學(xué)生已經(jīng)學(xué)過(guò)整式與分式,知道用式子可以表示實(shí)際問(wèn)題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問(wèn)題還會(huì)遇到二次根式。“二次根式” 一章就來(lái)認(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。
在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:
注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對(duì)于二次根式的加減來(lái)說(shuō)更易于掌握,教科書(shū)先安排二次根式的乘除,再安排二次根式的加減。“二次根式的乘除”一節(jié)的內(nèi)容有兩條發(fā)展的線(xiàn)索。一條是用具體計(jì)算的例子體會(huì)二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到
并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。
“二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類(lèi)比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過(guò)例題說(shuō)明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。
一元二次方程
學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì)遇到一種新方程 —— 一元二次方程。“一元二次方程”一章就來(lái)認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問(wèn)題。
本章首先通過(guò)雕像設(shè)計(jì)、制作方盒、排球比賽等問(wèn)題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過(guò)數(shù)值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對(duì)一元二次方程的解加以體會(huì),并給出一元二次方程的根的概念,
“降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。
(1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如 的方程。這樣的方程可以化為更為簡(jiǎn)單的形如 的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如 的方程。然后舉例說(shuō)明一元二次方程可以化為形如 的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。對(duì)于沒(méi)有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。
(2)在介紹公式法時(shí),首先借助配方法討論方程 的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。
“實(shí)際問(wèn)題與一元二次方程”一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。
旋轉(zhuǎn)
學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱(chēng),探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書(shū)中圖形變換又增添了一名新成員――旋轉(zhuǎn)。“旋轉(zhuǎn)”一章就來(lái)認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱(chēng)和中心對(duì)稱(chēng)圖形。
“旋轉(zhuǎn)”一節(jié)首先通過(guò)實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說(shuō)明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。
“中心對(duì)稱(chēng)”一節(jié)首先通過(guò)實(shí)例介紹中心對(duì)稱(chēng)的概念。然后讓學(xué)生探究中心對(duì)稱(chēng)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。這些內(nèi)容之后,通過(guò)線(xiàn)段、平行四邊形引出中心對(duì)稱(chēng)圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。
“課題學(xué)習(xí) 圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)?!£P(guān)注我們,搜微信公眾號(hào):chzhshuxue
圓
圓是一種常見(jiàn)的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識(shí)圓,探索它的性質(zhì),并用這些知識(shí)解決一些實(shí)際問(wèn)題。通過(guò)這一章的學(xué)習(xí),學(xué)生的解決圖形問(wèn)題的能力將會(huì)進(jìn)一步提高。
“圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問(wèn)題。接下來(lái),讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。
“與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過(guò)證明“在同一直線(xiàn)上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線(xiàn)和圓的三種位置關(guān)系、切線(xiàn)的概念以及與切線(xiàn)有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。
“正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。
“弧長(zhǎng)和扇形面積”一節(jié)首先介紹弧長(zhǎng)公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。
概率初步
將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識(shí)這個(gè)問(wèn)題了。掌握了概率的初步知識(shí),學(xué)生還會(huì)解決更多的實(shí)際問(wèn)題。
“概率”一節(jié)首先通過(guò)實(shí)例介紹隨機(jī)事件的概念,然后通過(guò)擲幣問(wèn)題引出概率的概念。
“用列舉法求概率”一節(jié)首先通過(guò)具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫(huà)樹(shù)形圖。
“利用頻率估計(jì)概率”一節(jié)通過(guò)幼樹(shù)成活率和柑橘損壞率等問(wèn)題介紹了用頻率估計(jì)概率的方法。
“課題學(xué)習(xí) 鍵盤(pán)上字母的排列規(guī)律”一節(jié)讓學(xué)生通過(guò)這一課題的研究體會(huì)概率的廣泛應(yīng)用。
猜你喜歡:
1.初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納有哪些
2.初三函數(shù)知識(shí)點(diǎn)總結(jié)
3.高考必備數(shù)學(xué)公式知識(shí)點(diǎn)知識(shí)歸納