初中二次函數(shù)知識點(diǎn)歸納總結(jié)
二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛。既然二次函數(shù)這么重要,我們怎么學(xué)好它呢?以下是學(xué)習(xí)啦小編分享給大家的初中二次函數(shù)知識點(diǎn)歸納,希望可以幫到你!
初中二次函數(shù)知識點(diǎn)歸納
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x₁)(x-x₂)[僅限于與x軸有交點(diǎn)A(x₁,0)和B(x₂,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點(diǎn)。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點(diǎn)。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對稱軸如下表:
當(dāng)h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當(dāng)h<0時,則向左平行移動|h|個單位得到.
當(dāng)h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時,y隨x的增大而減小;當(dāng)x≥-b/2a時,y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時,y隨x的增大而增大;當(dāng)x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x₂-x₁|
當(dāng)△=0.圖象與x軸只有一個交點(diǎn);
當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時,圖象落在x軸的上方,x為任何實(shí)數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實(shí)數(shù)時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點(diǎn)或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個交點(diǎn)坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x-x₁)(x-x₂)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).
初中數(shù)學(xué)解題技巧順口溜
1、有理數(shù)的加法運(yùn)算
同號兩數(shù)來相加,絕對值加不變號
異號相加大減小,大數(shù)決定和符號
互為相反數(shù)求和,結(jié)果是零須記好
【注】“大”減“小”是指絕對值的大小
2、有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正
有理數(shù)的乘法運(yùn)算符號法則
同號得正異號負(fù),一項(xiàng)為零積是零
3、合并同類項(xiàng)
說起合并同類項(xiàng),法則千萬不能忘
只求系數(shù)代數(shù)和,字母指數(shù)留原樣
4、去、添括號法則
去括號或添括號,關(guān)鍵要看連接號
擴(kuò)號前面是正號,去添括號不變號
括號前面是負(fù)號,去添括號都變號
5、解方程
已知未知鬧分離,分離要靠移完成
移加變減減變加,移乘變除除變乘
6、平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差
積化和差變兩項(xiàng),完全平方不是它
7、完全平方公式
二數(shù)和或差平方,展開式它共三項(xiàng)
首平方與末平方,首末二倍中間放
和的平方加聯(lián)結(jié),先減后加差平方
8、完全平方公式
首平方又末平方,二倍首末在中央
和的平方加再加,先減后加差平方
9、解一元一次方程
先去分母再括號,移項(xiàng)變號要記牢
同類各項(xiàng)去合并,系數(shù)化“1”還沒好
求得未知須檢驗(yàn),回代值等才算了
10、因式分解與乘法
和差化積是乘法,乘法本身是運(yùn)算
積化和差是分解,因式分解非運(yùn)算
初中數(shù)學(xué)學(xué)習(xí)方法
1、按部就班,環(huán)環(huán)相扣
數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個環(huán)節(jié)脫節(jié)都會影響整個學(xué)習(xí)的進(jìn)程。所以,平時學(xué)習(xí)不應(yīng)貪快,要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題,一定要把每一個環(huán)節(jié)都學(xué)牢。
2、概念記清,基礎(chǔ)夯實(shí)
千萬不要忽視最基本的概念、公理、定理和公式,每新學(xué)一個定理或者定義的時候,都要在理解的基礎(chǔ)上去深挖每一個字眼,有時候少說一兩個字,都可能導(dǎo)致結(jié)果的不同。要在剛開始學(xué)概念的時候就弄清楚,通過讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
3、適當(dāng)做題,巧做為主
學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的,平時多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉中考的題型,訓(xùn)練要做到有的放矢。有的同學(xué)埋頭題??嗫鄴暝o導(dǎo)書做掉一大堆卻鮮有提高,這就是陷入了做題的誤區(qū)。數(shù)學(xué)需要實(shí)踐,需要大量做題,但要"埋下頭去做題,抬起頭來想題",在做題中關(guān)注思路、方法、技巧,要"苦做"更要"巧做".考試中時間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯。
4、記錄錯題,避免再犯
俗話說,"一朝被蛇咬,十年怕井繩",可是同學(xué)們常會一次又一次地掉入相似甚至相同的"陷阱"里。因此,建議大家在平時的做題中就要及時記錄錯題,更重要的是還要想一想為什么會錯、以后要特別注意哪些地方,這樣就能避免不必要的失分。畢竟,中考或者在平時考試當(dāng)中是"分分必爭",一分也失不得。這樣 復(fù)習(xí)時,這個錯題本也就成了寶貴的復(fù)習(xí)資料。
5、集中兵力,攻下弱點(diǎn)
每個人都有自己的"軟肋",如果試題中涉及到你的薄弱環(huán)節(jié),一定會成為你的最痛。因此一定要通過短時間的專題學(xué)習(xí),集中優(yōu)勢兵力,打一場漂亮的殲滅戰(zhàn),避免變成"瘸腿".
猜你喜歡:
2.初中數(shù)學(xué)二次函數(shù)教學(xué)設(shè)計