初二下冊(cè)數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)歸納
初二下冊(cè)數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)歸納有哪些?想了解更多的信息嗎,和學(xué)習(xí)啦小編一起看看吧!下面是學(xué)習(xí)啦小編分享給大家的初二下冊(cè)數(shù)學(xué)必考知識(shí)點(diǎn),希望大家喜歡!
初二下冊(cè)數(shù)學(xué)必考知識(shí)點(diǎn)一
全等三角形
一.知識(shí)框架
二.知識(shí)概念
1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對(duì)稱等運(yùn)動(dòng)(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。
2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡稱“SAS”
(2)“角邊角”簡稱“ASA”
(3)“邊邊邊”簡稱“SSS”
(4)“角角邊”簡稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).
在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到集合的真正魅力。
初二下冊(cè)數(shù)學(xué)必考知識(shí)點(diǎn)二
軸對(duì)稱
一.知識(shí)框架
二.知識(shí)概念
1.對(duì)稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸。
2.性質(zhì):(1)軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
(2)角平分線上的點(diǎn)到角兩邊距離相等。
(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
(5)軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對(duì)等邊。
6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形
有兩個(gè)角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對(duì)稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。
初二下冊(cè)數(shù)學(xué)必考知識(shí)點(diǎn)三
實(shí)數(shù)
一.知識(shí)框架
二.知識(shí)概念
1.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。
2.平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。
4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0
實(shí)數(shù)部分主要要求學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng),能估算無理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。
初二下冊(cè)數(shù)學(xué)必考知識(shí)點(diǎn)四
函數(shù)
一.知識(shí)框架
二.知識(shí)概念
1.函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。
3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法
函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識(shí)的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問題出發(fā),引出變量,從具體到抽象的認(rèn)識(shí)事物。培養(yǎng)學(xué)生良好的變化與對(duì)應(yīng)意識(shí),體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂趣。
猜你喜歡:
1.八年級(jí)下冊(cè)政治知識(shí)點(diǎn)整理歸納
2.初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
3.高二數(shù)學(xué)復(fù)習(xí)必背知識(shí)點(diǎn)歸納