人教版數(shù)學必修2第三章高考復習試題附有答案詳解
想要在高考中取得好的數(shù)學成績,題海戰(zhàn)術少不了。下面是學習啦小編分享給大家的人教版數(shù)學必修2第三章高考復習試題的資料,希望大家喜歡!
人教版數(shù)學必修2第三章高考復習試題一
1.雙曲線的方程為=1(a>0,b>0),焦距為4,一個頂點是拋物線y2=4x的焦點,則雙曲線的離心率e=( )
A.2 B. C. D.
2.已知F1,F2是橢圓的兩個焦點,滿足=0的點M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是( )
A. (0,1) B. C. D.
3.設F為拋物線y2=4x的焦點,A,B,C為該拋物線上三點.若=0,則||+||+||=( )
A.9 B.6 C.4 D.3
4.已知拋物線y2=2px(p>0),過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的縱坐標為2,則該拋物線的準線方程為( )
A.x=1 B.x=-1 C.x=2 D.x=-2
5.已知A,B,P是雙曲線=1上不同的三點,且A,B連線經(jīng)過坐標原點,若直線PA,PB的斜率乘積kPA·kPB=,則該雙曲線的離心率為( )
A.1 B.2 C. -1 D.-2
6.已知拋物線y2=4x的焦點為F,準線為l,經(jīng)過F且斜率為的直線與拋物線在x軸上方的部分相交于點A,AKl,垂足為K,則AKF的面積是( )
A.4 B.3 C.4 D.8
7.過拋物線y2=2px(p>0)的焦點F作傾斜角為45°的直線交拋物線于A,B兩點,若線段AB的長為8,則p= .
8.(2014湖南,文14)平面上一機器人在行進中始終保持與點F(1,0)的距離和到直線x=-1的距離相等.若機器人接觸不到過點P(-1,0)且斜率為k的直線,則k的取值范圍是 .
9.已知雙曲線的中心在原點,且一個焦點為F(,0),直線y=x-1與其相交于M, N兩點,線段MN中點的橫坐標為-,求此雙曲線的方程.
10.(2014安徽,文21)設F1,F2分別是橢圓E:=1(a>b>0)的左、右焦點,過點F1的直線交橢圓E于A,B兩點,|AF1|=3|F1B|.
(1)若|AB|=4,ABF2的周長為16,求|AF2|;
(2)若cosAF2B=,求橢圓E的離心率.
11.已知點F是雙曲線=1(a>0,b>0)的左焦點,點E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A,B兩點,若ABE是直角三角形,則該雙曲線的離心率是( )
A. B.2 C.1+ D.2+
12.(2014湖北,文8)設a,b是關于t的方程t2cosθ+tsinθ=0的兩個不等實根,則過A(a,a2),B(b,b2)兩點的直線與雙曲線=1的公共點的個數(shù)為( )
A.0 B.1 C.2 D.3
13.已知橢圓C:=1(a>b>0)的離心率為,雙曲線x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為( )
A.=3 B.=1C.=-1D=-2
C.=1 D.=1
14.(2014江西,文20)如圖,已知拋物線C:x2=4y,過點M(0,2)任作一直線與C相交于A,B兩點,過點B作y軸的平行線與直線AO相交于點D(O為坐標原點).
(1)證明:動點D在定直線上;
(2)作C的任意一條切線l(不含x軸),與直線y=2相交于點N1,與(1)中的定直線相交于點N2,證明:|MN2|2-|MN1|2為定值,并求此定值.
15.已知點A(0,-2),橢圓E:=1(a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點,當OPQ的面積最大時,求l的方程.
參考答案
1.A 解析:拋物線y2=4x的焦點為(1,0),則在雙曲線中a=1.又2c=4,c=2,e==2.
2.C 解析:設F1,F2為焦點,由題意知,點M的軌跡是以F1F2為直徑的圓,
則c1或k<-1.
9.解:設雙曲線的方程為=1(a>0,b>0),
則a2+b2=()2=7.
由
消去y,得=1.
整理,得(b2-a2)x2+2a2x-a2-a2b2=0.(*)
由直線y=x-1與雙曲線有兩個交點知a≠b,
設M(x1,y1),N(x2,y2),
則x1和x2為方程(*)的根,
于是x1+x2=.
由已知得=-,
則=-,即5a2=2b2.
由得
故所求雙曲線方程為=1.
10.解:(1)由|AF1|=3|F1B|,|AB|=4,
得|AF1|=3,|F1B|=1.
因為ABF2的周長為16,
所以由橢圓定義可得4a=16,
|AF1|+|AF2|=2a=8.
故|AF2|=2a-|AF1|=8-3=5.
(2)設|F1B|=k,則k>0,
且|AF1|=3k,|AB|=4k.
由橢圓定義可得|AF2|=2a-3k,|BF2|=2a-k.
在ABF2中,由余弦定理可得|AB|2=|AF2|2+|BF2|2-2|AF2|·|BF2|cosAF2B,
即(4k)2=(2a-3k)2+(2a-k)2-(2a-3k)·(2a-k),
化簡可得(a+k)(a-3k)=0,
而a+k>0,故a=3k.
于是有|AF2|=3k=|AF1|,|BF2|=5k.
因此|BF2|2=|F2A|2+|AB|2,可得F1AF2A,
故AF1F2為等腰直角三角形.
從而c=a,所以橢圓E的離心率e=.
11.B 解析:將x=-c代入雙曲線方程得A.
由ABE是直角三角形,得=a+c,
即a2+ac=b2=c2-a2,
整理得c2-ac-2a2=0.
∴e2-e-2=0,
解得e=2(e=-1舍去).
12.A 解析:可解方程t2cosθ+tsinθ=0,
得兩根0,-.
不妨設a=0,b=-,
則A(0,0),B,
可求得直線方程y=-x,
因為雙曲線漸近線方程為y=±x,
故過A,B的直線即為雙曲線的一條漸近線,直線與雙曲線無交點,故選A.
13.D 解析:因為橢圓的離心率為,
所以e=,c2=a2,a2=a2-b2.
所以b2=a2,即a2=4b2.
因為雙曲線的漸近線為y=±x,代入橢圓得=1
即=1,
所以x2=b2,x=±b,y2=b2,y=±b.
則在第一象限的交點坐標為.
所以四邊形的面積為4×b×b=b2=16.解得b2=5,
故橢圓方程為=1.
14.(1)證明:依題意可設AB方程為y=kx+2,代入x2=4y,得x2=4(kx+2),即x2-4kx-8=0.
設A(x1,y1),B(x2,y2),
則有x1x2=-8,
直線AO的方程為y=x;BD的方程為x=x2.
解得交點D的坐標為
注意到x1x2=-8及=4y1,
則有y==-2.
因此D點在定直線y=-2上(x≠0).
(2)解:依題設,切線l的斜率存在且不等于0,設切線l的方程為y=ax+b(a≠0),
代入x2=4y得x2=4(ax+b),
即x2-4ax-4b=0,
由Δ=0得(4a)2+16b=0,化簡整理得b=-a2.
故切線l的方程可寫為y=ax-a2.
分別令y=2,y=-2得N1,N2的坐標為N1,N2.
則|MN2|2-|MN1|2=+42-=8,
即|MN2|2-|MN1|2為定值8.
15.解:(1)設F(c,0),由條件知,,得c=.
又,所以a=2,b2=a2-c2=1.
故E的方程為+y2=1
(2)當lx軸時不合題意,故設l:y=kx-2,P(x1,y1),Q(x2,y2).
將y=kx-2代入+y2=1,
得(1+4k2)x2-16kx+12=0.
當Δ=16(4k2-3)>0,即k2>時,x1,2=.
從而|PQ|=|x1-x2|
=.
又點O到直線PQ的距離d=,
所以OPQ的面積SOPQ=d·|PQ|=.
設=t,則t>0,
SOPQ=.
因為t+≥4,當且僅當t=2,即k=±時等號成立,且滿足Δ>0.
所以,當OPQ的面積最大時,l的方程為y=x-2或y=-x-2.
人教版數(shù)學必修2第三章高考復習試題二
一、選擇題
.下列函數(shù)中,與函數(shù)y=定義域相同的函數(shù)為( ).
A.y= B.y=
C.y=xex D.y=
解析 函數(shù)y=的定義域為{x|x≠0,xR}與函數(shù)y=的定義域相同,故選D.
答案 D
.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“同族函數(shù)”,則函數(shù)解析式為y=x2+1,值域為{1,3}的同族函數(shù)有( ).
A.1個 B.2個 C.3個 D.4個
解析 由x2+1=1,得x=0.由x2+1=3,得x=±,所以函數(shù)的定義域可以是{0,},{0,-},{0,,-},故值域為{1,3}的同族函數(shù)共有3個.
答案 C
.若函數(shù)y=f(x)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)y=f(x)的圖象可能是( ).解析 根據(jù)函數(shù)的定義,觀察得出選項B.
答案 B
.已知函數(shù)f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( ).
A.(1,10) B.(5,6)
C.(10,12) D.(20,24)
解析 a,b,c互不相等,不妨設ag[f(x)]的x的值是________.
解析 g(1)=3,f[g(1)]=f(3)=1,由表格可以發(fā)現(xiàn)g(2)=2,f(2)=3,f(g(2))=3,g(f(2))=1.
答案 1 2.已知函數(shù)f(x)=則滿足不等式f(1-x2)>f(2x)的x的取值范圍是________.
解析 由題意有或解得-11時,函數(shù)g(x)是[1,3]上的減函數(shù),此時g(x)min=g(3)=2-3a,g(x)max=g(1)=1-a,所以h(a)=2a-1;
當0≤a≤1時,若x[1,2],則g(x)=1-ax,有g(2)≤g(x)≤g(1);
若x(2,3],則g(x)=(1-a)x-1,有g(2)2x+m,即x2-3x+1>m,對x[-1,1]恒成立.令g(x)=x2-3x+1,則問題可轉(zhuǎn)化為g(x)min>m,又因為g(x)在[-1,1]上遞減, 所以g(x)min=g(1)=-1,故m<-1.
人教版數(shù)學必修2第三章高考復習試題三
一、選擇題
11.(文)(2014·重慶理,3)已知變量x與y正相關,且由觀測數(shù)據(jù)算得樣本平均數(shù)=3,=3.5,則由該觀測數(shù)據(jù)算得線性回歸方程可能為( )
A.=0.4x+2.3 B.=2x-2.4
C.=-2x+9.5 D.=-0.3x+4.4
[答案] A
[解析] 因為變量x和y正相關,所以回歸直線的斜率為正,排除C、D;又將點(3,3.5)代入選項A和B的方程中檢驗排除B,所以選A.
(理)一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了8次試驗,收集數(shù)據(jù)如下:
零件數(shù)x(個) 10 20 30 40 50 60 70 80 加工時間y(min) 62 68 75 81 89 95 102 108 設回歸方程為y=bx+a,則點(a,b)在直線x+45y-10=0的( )
A.左上方 B.左下方
C.右上方 D.右下方
[答案] C
[解析] =45,=85,a+45b=85,
a+45b-10>0,故點(a,b)在直線x+45y-10=0的右上方,故選C.
12.(2014·沈陽市質(zhì)檢)某高校進行自主招生,先從報名者中篩選出400人參加筆試,再按筆試成績擇優(yōu)選出100人參加面試.現(xiàn)隨機調(diào)查了24名筆試者的成績,如下表所示:
分數(shù)段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90) 人數(shù) 2 3 4 9 5 1 據(jù)此估計允許參加面試的分數(shù)線大約是( )
A.75 B.80 C.85 D.90
[答案] B
[解析] 由題可知,在24名筆試者中應選出6人參加面試.由表可得面試分數(shù)線大約為80.故選B.
13.(2013·陜西文,5)對一批產(chǎn)品的長度(單位:毫米)進行抽樣檢測,下圖為檢測結果的頻率分布直方圖.根據(jù)標準,產(chǎn)品長度在區(qū)間[20,25)上為一等品,在區(qū)間[15,20)和[25,30)上為二等品,在區(qū)間[10,15)和[30,35]上為三等品.用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取1件,則其為二等品的概率是( )
A.0.09 B.0.20 C.0.25 D.0.45
[答案] D
[解析] 解法1:用樣本估計總體.在區(qū)間[15,20)和[25,30)上的概率為0.04×5+[1-(0.02+0.04+0.06+0.03)×5=0.45.
解法2:由圖可知,抽得一等品的概率P1=0.06×5=0.3;抽得三等品的概率為P3=(0.02+0.03)×5=0.25.故抽得二等品的概率為1-(0.3+0.25)=0.45.
14.(2014·江西理,6)某人研究中學生的性別與成績、視力、智商、閱讀量這4個變量之間的關系,隨機抽查52名中學生,得到統(tǒng)計數(shù)據(jù)如表1至表4,則與性別有關聯(lián)的可能性最大的變量是( )
A.成績 B.視力 C.智商 D.閱讀量
[答案] D
[解析] A中,K2==;
B中,K2==;
C中,K2==;
D中,K2==.
因此閱讀量與性別相關的可能性最大,所以選D.
15.(文)某養(yǎng)兔場引進了一批新品種,嚴格按照科學配方進行喂養(yǎng),四個月后管理員稱其體重(單位:kg),將有關數(shù)據(jù)進行整理后分為五組,并繪制頻率分布直方圖(如圖所示).根據(jù)標準,體重超過6kg屬于超重,低于5kg的不夠分量.已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25、0.20、0.10、0.05,第二小組的頻數(shù)為400,則該批兔子的總數(shù)和體重正常的頻率分別為( )
A.1000,0.50 B.800,0.50
C.800,0.60 D.1000,0.60
[答案] D
[解析] 第二組的頻率為1-0.25-0.20-0.10-0.05=0.40,所以兔子總數(shù)為=1000只,體重正常的頻率為0.40+0.20=0.60.故選D.
(理)(2014·山東理,7)為了研究某藥品的療效,選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,……,第五組.下圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A.6 B.8 C.12 D.18
[答案] C
[解析] 第一、二兩組的頻率為0.24+0.16=0.4
志愿者的總人數(shù)為=50(人).
第三組的人數(shù)為:50×0.36=18(人)
有療效的人數(shù)為18-6=12(人)
二、填空題
16.(2013·遼寧文,16)為了考察某校各班參加課外書法小組的人數(shù),從全校隨機抽取5個班級,把每個班級參加該小組的人數(shù)作為樣本數(shù)據(jù),已知樣本平均數(shù)為7,樣本方差為4,且樣本數(shù)據(jù)互不相同,則樣本數(shù)據(jù)中的最大值為________.
[答案] 10
[解析] 設5個班級中參加的人數(shù)分別為x1,x2,x3,x4,x5,則=7,
=4,即5個整數(shù)平方和為20,x1,x2,x3,x4,x5這5個數(shù)中最大數(shù)比7大,但不能超過10,因此最大為10,平方和
20=0+1+1+9+9=(7-7)2+(8-7)2+(6-7)2+(10-7)2+(4-7)2.
因此參加的人數(shù)為4,6,7,8,10,故最大值為10,最小值為4.
三、解答題
17.(文)(2014·重慶文,17)20名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率分布直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學生人數(shù);
(3)從成績在[50,70)的學生中任選2人,求此2人的成績都在[60,70)中的概率.
[分析] 由頻率之和為1,求a,然后求出落在[50,60)和[60,70)中的人數(shù),最后用列舉法求古典概型的概率.
[解析] (1)組距為10,(2a+3a+6a+7a+2a)×10=200a=1,
a==0.005.
(2)落在[50,60)中的頻率為2a×10=20a=0.1,
落在[50,60)中的人數(shù)為2.
落在[60,70)中的學生人數(shù)為3a×10×20=3×0.005×10×20=3.
(3)設落在[50,60)中的2人成績?yōu)锳1,A2,落在[60,70)中的3人為B1,B2,B3.
則從[50,70)中選2人共有10種選法,Ω={(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3)}
其中2人都在[60,70)中的基本事件有3個:(B1,B2),(B1,B3),(B2,B3),故所求概率p=.
(理)(2014·遼寧理,18)一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示.
將日銷售量落入各組的頻率視為概率,并假設每天的銷售量相互獨立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個且另1天的日銷售量低于50個的概率;
(2)用X表示在未來3天里日銷售量不低于100個的天數(shù),求隨機變量X的分布列,期望E(X)及方差D(X).
[解析] (1)設A1表示事件“日銷售量不低于100個”,A2表示事件“日銷售量低于50個”,B表示事件“在未來連續(xù)3天是有連續(xù)2天日銷售量不低于100個且另一天銷售量低于50個”,因此
P(A1)=(0.006+0.004+0.002)×50=0.6
P(A2)=0.003×50=0.15,
P(B)=0.6×0.6×0.15×2=0.108.
(2)X可能取的值為0,1,2,3,相應的概率為
P(X=0)=C·(1-0.6)3=0.064,
P(X=1)=C·0.6(1-0.6)2=0.288.
P(X=2)=C·0.62(1-0.6)=0.432.
P(X=3)=C·0.63=0.216.
分布列為
X 0 1 2 3 P 0.064 0.288 0.432 0.216 因為X~B(3,0.6)
所以期望E(X)=3×0.6=1.8,
方差D(X)=3×0.6×(1-0.6)=0.72.
18.(文)為加強中學生實踐、創(chuàng)新能力和團隊精神的培養(yǎng),促進教育教學改革,鄭州市教育局舉辦了全市中學生創(chuàng)新知識競賽.某校舉行選拔賽,共有200名學生參加,為了解成績情況,從中選取50名學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成的頻率分布表,解答下列問題:
分組 頻數(shù) 頻率 一 60.5~70.5 a 0.26 二 70.5~80.5 15 c 三 80.5~90.5 18 0.36 四 90.5~100.5 b d 合計 50 e (1)若用系統(tǒng)抽樣的方法抽取50個樣本,現(xiàn)將所有學生隨機地編號為000,001,002,…,199,試寫出第二組第一位學生的編號;
(2)求出a、b、c、d、e的值(直接寫出結果),并作出頻率分布直方圖;
(3)若成績在85.5~95.5分的學生為二等獎,問參賽學生中獲得二等獎的學生約為多少人.
[解析] (1)004
(2)a,b,c,d,e的值分別為13,4,0.30,0.08,1.
頻率分布直方圖如下:
(3)由樣本中成績在80.5~90.5的頻數(shù)為18,成績在90.5~100.5的頻數(shù)為4,可估計成績在85.5~95.5的人數(shù)為11人,故獲得二等獎的學生約為×11=44人.
(理)(2012·山西省高考聯(lián)合模擬)為了了解某年級1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績?nèi)拷橛?3s與18s之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前3個組的頻率之比為3?8?19,且第二組的頻數(shù)為8.
(1)將頻率當作概率,求調(diào)查中隨機抽取了多少個學生的百米成績;
(2)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.
[解析] (1)設圖中從左到右前3個組的頻率分別為3x,8x,19x依題意,得3x+8x+19x+0.32×1+0.08×1=1,x=0.02,設調(diào)查中隨機抽取了n個學生的百米成績,則8×0.02=,n=50,調(diào)查中隨機抽取了50個學生的百米成績.
(2)百米成績在第一組的學生數(shù)為3×0.02×1×50=3,記他們的成績?yōu)閍、b、c百米成績在第五組的學生數(shù)有0.08×1×50=4,記他們的成績?yōu)閙、n、p、q,則從第一、五組中隨機取出兩個成績,基本事件有{a,b}、{a,c}、{a,m}、{a,n}、{a,p}、{a,q}、{b,c}、{b,m}、{b,n}、{b,p}、{b,q}、{c,m}、{c,n}、{c,p}、{c,q}、{m,n}、{m,p}、{m,q}、{n,p}、{n,q}、{p,q},共21個
其中滿足“成績的差的絕對值大于1s”所包含的基本事件有{a,m}、{a,n}、{a,p}、{a,q}、{b,m}、{b,n}、{b,p}、{b,q}、{c,m}、{c,n}、{c,p}、{c,q},共12個,所以P==.
猜你喜歡: