人教版初中數(shù)學(xué)整數(shù)總復(fù)習(xí)資料
人教版初中數(shù)學(xué)整數(shù)總復(fù)習(xí)資料
初中的數(shù)學(xué)總是要考好的,因?yàn)橹锌急仨氁嫉模谀┑膹?fù)習(xí)資料總是要看的,因?yàn)?,期末總是要考試的。以下是學(xué)習(xí)啦小編分享給大家的人教版初中數(shù)學(xué)整數(shù)總復(fù)習(xí)資料的資料,希望可以幫到你!
人教版初中數(shù)學(xué)整數(shù)總復(fù)習(xí)資料1
第一章 實(shí)數(shù)
★重點(diǎn)★ 實(shí)數(shù)的有關(guān)概念及性質(zhì),實(shí)數(shù)的運(yùn)算
☆內(nèi)容提要☆
一、 重要概念
1.數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。
3.倒數(shù): ①定義及表示法
②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。
4.相反數(shù): ①定義及表示法
?、谛再|(zhì):A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:①定義(“三要素”)
?、谧饔茫篈.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對應(yīng)的點(diǎn)到原點(diǎn)的距離。
?、讴│≥0,符號“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。
二、 實(shí)數(shù)的運(yùn)算
1. 運(yùn)算法則(加、減、乘、除、乘方、開方)
2. 運(yùn)算定律(五個—加法[乘法]交換律、結(jié)合律;[乘法對加法的]
分配律)
3. 運(yùn)算順序:A.高級運(yùn)算到低級運(yùn)算;B.(同級運(yùn)算)從“左”
到“右”(如5÷ ×5);C.(有括號時)由“小”到“中”到“大”。
三、 應(yīng)用舉例(略)
附:典型例題
1. 已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。
人教版初中數(shù)學(xué)整數(shù)總復(fù)習(xí)資料2
第二章 代數(shù)式
★重點(diǎn)★代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運(yùn)算
☆內(nèi)容提要☆
一、 重要概念
分類:
1.代數(shù)式與有理式
用運(yùn)算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)
的一個數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運(yùn)算的整式叫做單項式。(數(shù)字與字母的積—包括單獨(dú)的一個數(shù)或字母)
幾個單項式的和,叫做多項式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項式、多項式區(qū)分開。②進(jìn)行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,
=x, =│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看
5.同類項及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。
注意:①從外形上判斷;②區(qū)別: 、 是根式,但不是無理式(是無理數(shù))。
7.算術(shù)平方根
?、耪龜?shù)a的正的平方根( [a≥0—與“平方根”的區(qū)別]);
?、扑阈g(shù)平方根與絕對值
?、?聯(lián)系:都是非負(fù)數(shù), =│a│
②區(qū)別:│a│中,a為一切實(shí)數(shù); 中,a為非負(fù)數(shù)。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號劃去叫做分母有理化。
9.指數(shù)
⑴ ( —冪,乘方運(yùn)算)
?、?a>0時, >0;②a<0時, >0(n是偶數(shù)), <0(n是奇數(shù))
?、屏阒笖?shù): =1(a≠0)
負(fù)整指數(shù): =1/ (a≠0,p是正整數(shù))
二、 運(yùn)算定律、性質(zhì)、法則
1.分式的加、減、乘、除、乘方、開方法則
2.分式的性質(zhì)
?、呕拘再|(zhì): = (m≠0)
⑵符號法則:
?、欠狈质剑孩俣x;②化簡方法(兩種)
3.整式運(yùn)算法則(去括號、添括號法則)
4.冪的運(yùn)算性質(zhì):① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法則:⑴單×單;⑵單×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術(shù)根的性質(zhì): = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式運(yùn)算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. .
11.科學(xué)記數(shù)法: (1≤a<10,n是整數(shù)=
三、 應(yīng)用舉例(略)
四、 數(shù)式綜合運(yùn)算(略)
人教版初中數(shù)學(xué)整數(shù)總復(fù)習(xí)資料3
第三章 統(tǒng)計初步
★重點(diǎn)★
☆ 內(nèi)容提要☆
一、 重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))
二、 計算方法
1.樣本平均數(shù):⑴ ;⑵若 , ,…, ,則 (a—常數(shù), , ,…, 接近較整的常數(shù)a);⑶加權(quán)平均數(shù): ;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準(zhǔn)確。
2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a—接近 、 、…、 的平均數(shù)的較“整”的常數(shù));若 、 、…、 較“小”較“整”,則 ;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當(dāng)樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標(biāo)準(zhǔn)差:
三、 應(yīng)用舉例(略)
猜你喜歡: