數(shù)學(xué)函數(shù)復(fù)習(xí)資料整合
數(shù)學(xué)學(xué)習(xí),不僅需要勤奮,更需要方法、需要花心思。構(gòu)建每個章節(jié)的知識框圖,是很有效的學(xué)習(xí)方法,它串聯(lián)起了所有重、難點,幫助你融化貫通、舉一反三。下面是學(xué)習(xí)啦小編分享給大家的數(shù)學(xué)函數(shù)復(fù)習(xí)資料的資料,希望大家喜歡!
數(shù)學(xué)函數(shù)復(fù)習(xí)資料
一次函數(shù)
一、定義與定義式
自變量x和因變量y有如下關(guān)系:y=kx+b 則此時稱y是x的一次函數(shù)。
【特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)】
二、一次函數(shù)的性質(zhì)
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k
【即:y=kx+b (k為任意不為零的實數(shù) b取任何實數(shù))】
2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì)
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。
因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b>0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限。
(特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。)
四、確定一次函數(shù)的表達式
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。
(1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b ... ① 和y2=kx2+b …②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應(yīng)用
1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:(不全面,可以在書上找)
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)2+(y1-y2)2 (注:根號下(x1-x2)與(y1-y2)的平方和)
二次函數(shù)
一、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,|a|還可以決定開口大小,|a|越大開口就越小,|a|越小開口就越大。)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
二、二次函數(shù)的三種表達式
一般式:y=ax2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)2+k [拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?) [僅限于與x軸有交點A(x?,0)和 B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b2)/4a x1,x2=(-b±√b2-4ac)/2a
三、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
四、拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線
x= -b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標(biāo)為
P( -b/2a ,(4ac-b2)/4a )
當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ= b2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ= b^2-4ac>0時,拋物線與x軸有2個交點。
Δ= b^2-4ac=0時,拋物線與x軸有1個交點。
Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
五、二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax2+bx+c,
當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。
函數(shù)與x軸交點的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標(biāo)及對稱軸如下:
解析式 和 頂點坐標(biāo)對 和 對稱軸
y=ax2 (0,0) x=0
y=a(x-h)2 (h,0) x=h
y=a(x-h)2+k (h,k) x=h
y=ax2+bx+c (-b/2a,[4ac-b2]/4a) x=-b/2a
當(dāng)h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當(dāng)h<0時,則向左平行移動|h|個單位得到。
當(dāng)h>0,k>0時,將拋物線y=ax2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h>0,k<0時,將拋物線y=ax2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)2+k的圖象;
因此,研究拋物線 y=ax2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)2+k的形式,可確定其頂點坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。
2.拋物線y=ax2+bx+c(a≠0)的圖象:當(dāng)a>0時,開口向上,當(dāng)a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標(biāo)是(-b/2a,[4ac-b2]/4a).
3.拋物線y=ax2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時,y隨x的增大而減小;當(dāng)x ≥ -b/2a時,y隨x的增大而增大.若a<0,當(dāng)x ≤ -b/2a時,y隨x的增大而增大;當(dāng)x ≥ -b/2a時,y隨x的增大而減小.
4.拋物線y=ax2+bx+c的圖象與坐標(biāo)軸的交點:
(1)圖象與y軸一定相交,交點坐標(biāo)為(0,c);
(2)當(dāng)△=b2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當(dāng)△=0.圖象與x軸只有一個交點;
當(dāng)△<0.圖象與x軸沒有交點.當(dāng)a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當(dāng)a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.
5.拋物線y=ax2+bx+c的最值:如果a>0(a<0),則當(dāng)x= -b/2a時,y最小(大)值=(4ac-b2)/4a.
頂點的橫坐標(biāo),是取得最值時的自變量值,頂點的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:
y=ax2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個交點坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn)。
反比例函數(shù)
形如 y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質(zhì):反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為|k|。
知識點:
1.過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x ,若在分母上加減任意一個實數(shù) (即 y=k/(x±m)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
對數(shù)函數(shù)
對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù) 的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。
(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
(3)函數(shù)總是通過(1,0)這點。
(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對數(shù)函數(shù)無界。
指數(shù)函數(shù)
指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實數(shù)集合為定義域,則只有使得
如圖所示為a的不同大小影響函數(shù)圖形的情況。
可以得到:
(1) 指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2) 指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
(3) 函數(shù)圖形都是下凹的。
(4) a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5) 可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6) 函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。
(7) 函數(shù)總是通過(0,1)這點。
(8) 顯然指數(shù)函數(shù)無界。
奇偶性
一、定義
一般地,對于函數(shù)f(x)
(1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
(2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
(3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
說明:①奇、偶性是函數(shù)的整體性質(zhì),對整個定義域而言
?、谄妗⑴己瘮?shù)的定義域一定關(guān)于原點對稱,如果一個函數(shù)的定義域不關(guān)于原點對稱,則這個函數(shù)一定不是奇(或偶)函數(shù)。
(分析:判斷函數(shù)的奇偶性,首先是檢驗其定義域是否關(guān)于原點對稱,然后再嚴格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)
?、叟袛嗷蜃C明函數(shù)是否具有奇偶性的根據(jù)是定義
二、奇偶函數(shù)圖像的特征
定理 奇函數(shù)的圖像關(guān)于原點成中心對稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對稱圖形。
f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點對稱
點(x,y)→(-x,-y)
奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上也是單調(diào)遞增。
偶函數(shù) 在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上單調(diào)遞減。
三、奇偶函數(shù)運算
1.兩個偶函數(shù)相加所得的和為偶函數(shù).
2.兩個奇函數(shù)相加所得的和為奇函數(shù).
3.一個偶函數(shù)與一個奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).
4. 兩個偶函數(shù)相乘所得的積為偶函數(shù).
5.兩個奇函數(shù)相乘所得的積為偶函數(shù).
6.一個偶函數(shù)與一個奇函數(shù)相乘所得的積為奇函數(shù).
定義域
(高中函數(shù)定義)設(shè)A,B是兩個非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A--B為集合A到集合B的一個函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;
值域
一、名稱定義
函數(shù)中,應(yīng)變量的取值范圍叫做這個函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合。
常用的求值域的方法
(1)化歸法
(2)圖象法(數(shù)形結(jié)合)
(3)函數(shù)單調(diào)性法
(4)配方法
(5)換元法
(6)反函數(shù)法(逆求法)
(7)判別式法
(8)復(fù)合函數(shù)法
(9)三角代換法
(10)基本不等式法等
二、關(guān)于函數(shù)值域誤區(qū)
定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學(xué)中,實行“定義域優(yōu)先”的原則,無可置疑。
然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當(dāng)?shù)模^不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。
如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。
才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。
三、“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們在學(xué)習(xí)中經(jīng)常遇到的兩個概念,許多同學(xué)常常將它們混為一談,實際上這是兩個不同的概念。
“值域”是所有函數(shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。
也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。
數(shù)學(xué)復(fù)習(xí)注意事項
1、注重“類比”思想
不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認識來認識與它相似的另一事物,這種認識事物的思維方法就是類比法。初中學(xué)習(xí)的正比例函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)在概念的得來、圖象性質(zhì)的研究、及基本解題方法上都有著本質(zhì)上的相似。因此采用類比的方法不但省時、省力,還有助于學(xué)生的理解和應(yīng)用。是一種既經(jīng)濟又實效的教學(xué)方法。
2、注重“數(shù)形結(jié)合”思想
數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
函數(shù)的三種表示方法:解析法、列表法、圖象法本身就體現(xiàn)著函數(shù)的“數(shù)形結(jié)合”。函數(shù)圖象就是將變化抽象的函數(shù)“拍照”下來研究的有效工具,函數(shù)教學(xué)離不開函數(shù)圖象的研究。
3、注重自變量的取值范圍
自變量的取值范圍,是解函數(shù)問題的難點和考點。正確求出自變量取值范圍,正確理解問題,并化歸為解不等式或不等式組。這需要學(xué)生掌握函數(shù)的思想,不等式的實際應(yīng)用,全面考慮取值的實際意義。
4、注重實際應(yīng)用問題
學(xué)習(xí)函數(shù)的主要目的之一就是在復(fù)雜的實際生活中建立有效的函數(shù)模型,利用函數(shù)的知識解決問題。這也是新課標(biāo)所倡導(dǎo)的學(xué)習(xí),因此新教材大力倡導(dǎo)函數(shù)與實際的應(yīng)用。