不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 復(fù)習(xí)方法 > 初中數(shù)學(xué)期末復(fù)習(xí)之解題方法大全

初中數(shù)學(xué)期末復(fù)習(xí)之解題方法大全

時(shí)間: 若木623 分享

初中數(shù)學(xué)期末復(fù)習(xí)之解題方法大全

  一、選擇題的解法

  1、直接法:根據(jù)選擇題的題設(shè)條件,通過(guò)計(jì)算、推理或判斷,,最后得到題目的所求。

  2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);

  在解這類(lèi)選擇題時(shí),可以考慮從取值范圍內(nèi)選取某幾個(gè)特殊值,代入原命題進(jìn)行驗(yàn)證,然后淘汰錯(cuò)誤的,保留正確的。

  3、淘汰法:把題目所給的四個(gè)結(jié)論逐一代回原題的題干中進(jìn)行驗(yàn)證,把錯(cuò)誤的淘汰掉,直至找到正確的答案。

  4、逐步淘汰法:如果我們?cè)谟?jì)算或推導(dǎo)的過(guò)程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;

  每走一步都與四個(gè)結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個(gè)錯(cuò)誤的結(jié)論就被全部淘汰掉了。

  5、數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;

  使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解題思路,使問(wèn)題得到解決。

  二、常用的數(shù)學(xué)思想方法

  1、數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;

  使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解體思路,使問(wèn)題得到解決。

  2、聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。

  在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。

  如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。

  3、分類(lèi)討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的差異,分各種不同情況予以考查;

  這種分類(lèi)思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的解題策略。

  4、待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。

  為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問(wèn)題得到解決。

  5、配方法:就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。

  配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問(wèn)題,都有重要的作用。

  6、換元法:在解題過(guò)程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問(wèn)題的一種方法。

  換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問(wèn)題歸結(jié)為比原來(lái)更為基本的問(wèn)題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。

  7、分析法:在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既從結(jié)論開(kāi)始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;

  則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過(guò)程通常稱(chēng)為“執(zhí)果尋因”

  8、綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開(kāi)始,逐步推導(dǎo)得到結(jié)論,這種思維過(guò)程通常稱(chēng)為“由因?qū)Ч?rdquo;

  9、演繹法:由一般到特殊的推理方法。

  10、歸納法:由一般到特殊的推理方法。

  11、類(lèi)比法:眾多客觀(guān)事物中,存在著一些相互之間有相似屬性的事物,在兩個(gè)或兩類(lèi)事物之間;

  根據(jù)它們的某些屬性相同或相似,推出它們?cè)谄渌麑傩苑矫嬉部赡芟嗤蛳嗨频耐评矸椒ā?/p>

  類(lèi)比法既可能是特殊到特殊,也可能一般到一般的推理。

  三、函數(shù)、方程、不等式

  常用的數(shù)學(xué)思想方法:

 ?、艛?shù)形結(jié)合的思想方法。

 ?、拼ㄏ禂?shù)法。

 ?、桥浞椒ā?/p>

 ?、嚷?lián)系與轉(zhuǎn)化的思想。

 ?、蓤D像的平移變換。

  四、證明角的相等

  1、對(duì)頂角相等。

  2、角(或同角)的補(bǔ)角相等或余角相等。

  3、兩直線(xiàn)平行,同位角相等、內(nèi)錯(cuò)角相等。

  4、凡直角都相等。

  5、角平分線(xiàn)分得的兩個(gè)角相等。

  6、同一個(gè)三角形中,等邊對(duì)等角。

  7、等腰三角形中,底邊上的高(或中線(xiàn))平分頂角。

  8、平行四邊形的對(duì)角相等。

  9、菱形的每一條對(duì)角線(xiàn)平分一組對(duì)角。

  10、 等腰梯形同一底上的兩個(gè)角相等。

  11、 關(guān)系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所 對(duì)的圓心角相等。

  12、 圓內(nèi)接四邊形的任何一個(gè)外角都等于它的內(nèi)對(duì)角。

  13、 同弧或等弧所對(duì)的圓周角相等。

  14、 弦切角等于它所夾的弧對(duì)的圓周角。

  15、 同圓或等圓中,如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等。

  16、 全等三角形的對(duì)應(yīng)角相等。

  17、 相似三角形的對(duì)應(yīng)角相等。

  18、 利用等量代換。

  19、 利用代數(shù)或三角計(jì)算出角的度數(shù)相等

  20、 切線(xiàn)長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,并且這一點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。

  五、證明直線(xiàn)的平行或垂直

  1、證明兩條直線(xiàn)平行的主要依據(jù)和方法:

 ?、拧⒍x、在同一平面內(nèi)不相交的兩條直線(xiàn)平行。

 ?、?、平行定理、兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行。

 ?、?、平行線(xiàn)的判定:同位角相等(內(nèi)錯(cuò)角或同旁?xún)?nèi)角),兩直線(xiàn)平行。

 ?、?、平行四邊形的對(duì)邊平行。

  ⑸、梯形的兩底平行。

 ?、?、三角形(或梯形)的中位線(xiàn)平行與第三邊(或兩底)

  ⑺、一條直線(xiàn)截三角形的兩邊(或兩邊的延長(zhǎng)線(xiàn))所得的對(duì)應(yīng)線(xiàn)段成比例,則這條直線(xiàn)平行于三角形的第三邊。

  2、證明兩條直線(xiàn)垂直的主要依據(jù)和方法:

 ?、?、兩條直線(xiàn)相交所成的四個(gè)角中,由一個(gè)是直角時(shí),這兩條直線(xiàn)互相垂直。

 ?、?、直角三角形的兩直角邊互相垂直。

 ?、?、三角形的兩個(gè)銳角互余,則第三個(gè)內(nèi)角為直角。

 ?、取⑷切我贿叺闹芯€(xiàn)等于這邊的一半,則這個(gè)三角形為直角三角形。

 ?、?、三角形一邊的平方等于其他兩邊的平方和,則這邊所對(duì)的內(nèi)角為直角。

 ?、?、三角形(或多邊形)一邊上的高垂直于這邊。

 ?、恕⒌妊切蔚捻斀瞧椒志€(xiàn)(或底邊上的中線(xiàn))垂直于底邊。

 ?、獭⒕匦蔚膬膳R邊互相垂直。

 ?、?、菱形的對(duì)角線(xiàn)互相垂直。

 ?、巍⑵椒窒?非直徑)的直徑垂直于這條弦,或平分弦所對(duì)的弧的直徑垂直于這條弦。

 ?、稀雸A或直徑所對(duì)的圓周角是直角。

  ⑿、圓的切線(xiàn)垂直于過(guò)切點(diǎn)的半徑。

 ?、?、相交兩圓的連心線(xiàn)垂直于兩圓的公共弦。

  六、證明線(xiàn)段的比例式或等積式的主要依據(jù)和方法:

  1、比例線(xiàn)段的定義。

  2、平行線(xiàn)分線(xiàn)段成比例定理及推論。

  3、平行于三角形的一邊,并且和其他兩邊(或兩邊的延長(zhǎng)線(xiàn))相交的直線(xiàn),所截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例。

  4、過(guò)分點(diǎn)作平行線(xiàn);

  5、相似三角形的對(duì)應(yīng)高成比例,對(duì)應(yīng)中線(xiàn)的比和對(duì)應(yīng)角平分線(xiàn)的比都等于相似比。

  6、相似三角形的周長(zhǎng)的比等于相似比。

  7、相似三角形的面積的比等于相似比的平方。

  8、相似三角形的對(duì)應(yīng)邊成比例。

  9、通過(guò)比例的性質(zhì)推導(dǎo)。

  10、用代數(shù)、三角方法進(jìn)行計(jì)算。

  11、借助等比或等線(xiàn)段代換。

  七、幾何作圖

  1、掌握最基本的五種尺規(guī)作圖

  ⑴、作一條線(xiàn)段等于已知線(xiàn)段。

 ?、?、作一個(gè)角等于已知角。

132311