提高初中數(shù)學(xué)解題速度的方法
初中階段學(xué)生數(shù)學(xué)學(xué)習(xí)成績兩極分化非常嚴(yán)重,學(xué)習(xí)差的學(xué)生占的比例較大,學(xué)好數(shù)學(xué)要掌握好方法。那么,要如何提高數(shù)學(xué)解題速度?下面是學(xué)習(xí)啦小編為你帶來的提高初中數(shù)學(xué)解題速度的方法,希望對你有所幫助。
初中數(shù)學(xué)學(xué)生必備的解題理念
1.如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學(xué)基礎(chǔ)知識,“兵力”就是數(shù)學(xué)基本方法,而調(diào)動數(shù)學(xué)基礎(chǔ)知識、運用數(shù)學(xué)思想方法的數(shù)學(xué)解題思想則正是“兵法”。
2.數(shù)學(xué)家存在的主要理由就是解決問題。因此,數(shù)學(xué)的真正的組成部分是問題和解答。“問題是數(shù)學(xué)的心臟”。
3.問題反映了現(xiàn)有水平與客觀需要的矛盾,對學(xué)生來說,就是已知和未知的矛盾。問題就是矛盾。對于學(xué)生而言,問題有三個特征:
(1)接受性:學(xué)生愿意解決并且具有解決它的知識基礎(chǔ)和能力基礎(chǔ)。
(2)障礙性:學(xué)生不能直接看出它的解法和答案,而必須經(jīng)過思考才能解決。
(3)探究性:學(xué)生不能按照現(xiàn)成的的套路去解,需要進行探索,尋找新的處理方法。
4.練習(xí)型的問題具有教學(xué)性,它的結(jié)論為數(shù)學(xué)家或教師所已知,其之成為問題僅相對于教學(xué)或?qū)W生而言,包括一個待計算的答案、一個待證明的結(jié)論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。
5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:
(1)問題解決是心理活動。面臨新情境、新課題,發(fā)現(xiàn)它與主客觀需要的矛盾而自己卻沒有現(xiàn)成對策時,所引起的尋求處理辦法的一種活動。
(2)問題解決是一個探究過程。把“問題解決”定義為“將先前已獲得的知識用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個發(fā)現(xiàn)的過程、探索的過程、創(chuàng)新的過程。
(3)問題解決是一個學(xué)習(xí)目的。“學(xué)習(xí)數(shù)學(xué)的主要目的在于問題解決”。因而,學(xué)習(xí)怎樣解決問題就成為學(xué)習(xí)數(shù)學(xué)的根本原因。此時,問題解決就獨立于特殊的問題,獨立于一般過程或方法,也獨立于數(shù)學(xué)的具體內(nèi)容。
(4)問題解決是一種生存能力。重視問題解決能力的培養(yǎng)、發(fā)展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界里,學(xué)習(xí)生存的本領(lǐng)。
6.解題研究存在一些誤區(qū),首先一個表現(xiàn)是,用現(xiàn)成的例子說明現(xiàn)成的觀點,或用現(xiàn)成的觀點解釋現(xiàn)成的例子。其次一個表現(xiàn)是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或?qū)嵸|(zhì)性的突破。第三個表現(xiàn)是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區(qū)里,“解題而不立法、作答而不立論”。
7.人的思維依賴于必要的知識和經(jīng)驗,數(shù)學(xué)知識正是數(shù)學(xué)解題思維活動的出發(fā)點與憑借。豐富的知識并加以優(yōu)化的結(jié)構(gòu)能為題意的本質(zhì)理解與思路的迅速尋找創(chuàng)造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。
8.熟練掌握數(shù)學(xué)基礎(chǔ)知識的體系。對于中學(xué)數(shù)學(xué)解題來說,應(yīng)如數(shù)學(xué)家珍說出教材的概念系統(tǒng)、定理系統(tǒng)、符號系統(tǒng)。還應(yīng)掌握中學(xué)數(shù)學(xué)競賽涉及的基礎(chǔ)理論。深刻理解數(shù)學(xué)概念、準(zhǔn)確掌握數(shù)學(xué)定理、公式和法則。熟悉基本規(guī)則和常用的方法,不斷積累數(shù)學(xué)技巧。
9.數(shù)學(xué)的本質(zhì)活動是思維。思維的對象是概念,思維的方式是邏輯。當(dāng)這種思維與新事物接觸時,將出現(xiàn)“相容”和“不容”的兩種可能。出現(xiàn)“相容”時,產(chǎn)生新結(jié)果,且被原概念吸收,并發(fā)展成新概念;當(dāng)出現(xiàn)“不容”時,則產(chǎn)生了所謂的問題。這時,思維出現(xiàn)迂回,甚至?xí)簳r退回原地,將原概念擴大或?qū)⒃壿嬜兪?,直到新思維與事物相容為止。至此,也產(chǎn)生新的結(jié)果,也被原思維吸收。這就是一個思維活動的全過程。
10.解題能力,表現(xiàn)于發(fā)現(xiàn)問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數(shù)學(xué)能力(運算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:
(1)掌握解題的科學(xué)程序;
(2)掌握數(shù)學(xué)中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;
(3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調(diào)動精明的解題技巧;
(4)具有敏銳的直覺。應(yīng)該明白,我們的數(shù)學(xué)解題活動是在縱橫交錯的數(shù)學(xué)關(guān)系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,并非對每一個數(shù)學(xué)細節(jié)都洞察無遺,并非總能借助于“三段論”的橋梁,而是在短時間內(nèi)朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數(shù)學(xué)對象的本質(zhì)領(lǐng)悟:
11.解題具有實踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學(xué)到它……你想學(xué)會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學(xué)會”。
12.所謂解題經(jīng)驗,就是某些數(shù)學(xué)知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經(jīng)驗所獲得的有序組合,就好像建筑上的預(yù)制構(gòu)件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。
13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學(xué)生解題是一種意志教育。當(dāng)學(xué)生求解那些對他來說并不太容易的題目時,他學(xué)會了敗而不餒,學(xué)會了贊賞微小的進展,學(xué)會了等待主要念頭的萌動,學(xué)會了當(dāng)主要念頭出現(xiàn)后如何全力以赴,直撲問題的核心或主干;當(dāng)一旦突破關(guān)卡,如何去占領(lǐng)問題的至高點,并冷靜地府視全局,從而得到問題的完善解決。如果學(xué)生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那么他的數(shù)學(xué)解題訓(xùn)練就在最重要的地方失敗了。
14.教師的例題教學(xué)要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺裝神弄巧,得心應(yīng)手,左右逢源,把自己打扮成超人,將給學(xué)生的學(xué)習(xí)產(chǎn)生誤導(dǎo)。這樣的教師越高明,學(xué)生越自卑。
提高初中數(shù)學(xué)解題速度的八步驟
在考試時,我們常常感到時間很緊,試卷還沒來得及做完,就到收卷時間了,雖然有些試題,只要再努一把力,我們是有可能做出來的。這其中的原因之一,就是解題速度太慢。
幾乎每個學(xué)生都知道,要想取得好成績,必須努力學(xué)習(xí),只有加強練習(xí),多做習(xí)題,才能熟能生巧??墒怯行W(xué)生天天趴在那里做題,但解出的題量卻不多,花了大量的時間,卻沒有解出大量的習(xí)題,難道不應(yīng)找一找原因嗎?何況,我們并不比別人的時間更多。試想,如果你的解題速度提高10倍,那會是怎樣一種情景?解題速度提高10倍?可能嗎?答案是肯定的,完全可能。關(guān)鍵在于你想與不想了。
那么,究竟怎樣才能提高解題速度呢?
首先,應(yīng)十分熟悉習(xí)題中所涉及的內(nèi)容,做到概念清晰,對定義、公式、定理和規(guī)則非常熟悉。你應(yīng)該知道,解題、做練習(xí)只是學(xué)習(xí)過程中的一個環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題是為閱讀服務(wù)的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規(guī)則,能否利用這些概念、定理、公式和規(guī)則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規(guī)則越熟悉,解題速度就越快。因此,我們在解題之前,應(yīng)通過閱讀教科書和做簡單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。我指導(dǎo)學(xué)生按此方法學(xué)習(xí),幾乎所有的學(xué)生都大大提高了解題的速度,其效果非常之好。
第二,還要熟悉習(xí)題中所涉及到的以前學(xué)過的知識和與其他學(xué)科相關(guān)的知識。例如,有時候,我們遇到一道不會做的習(xí)題,不是我們沒有學(xué)會現(xiàn)在所要學(xué)會的內(nèi)容,而是要用到過去已經(jīng)學(xué)過的一個公式,而我們卻記得不很清楚了;或是數(shù)學(xué)題中要用到的一個物理概念,而我們對此已不是十分清晰了;或是需用到一個特殊的定理,而我們卻從未學(xué)過,這樣就使解題速度大為降低。這時我們應(yīng)先補充一些必須補充的相關(guān)知識,弄清楚與題目相關(guān)的概念、公式或定理,然后再去解題,否則就是浪費時間,當(dāng)然,解題速度就更無從談起了。
第三,對基本的解題步驟和解題方法也要熟悉。解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。否則,走了彎路就多花了時間。
第四,要學(xué)會歸納總結(jié)。在解過一定數(shù)量的習(xí)題之后,對所涉及到的知識、解題方法進行歸納總結(jié),以便使解題思路更為清晰,就能達到舉一反三的效果,對于類似的習(xí)題一目了然,可以節(jié)約大量的解題時間。
第五,應(yīng)先易后難,逐步增加習(xí)題的難度。人們認識事物的過程都是從簡單到復(fù)雜,一步一步由表及里地深入下去。一個人的能力也是通過鍛煉逐步增長起來的。若簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。養(yǎng)成了習(xí)慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學(xué)生不太重視這些基本的、簡單的習(xí)題,認為沒有必要花費時間去解這些簡單的習(xí)題,結(jié)果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。
其實,解簡單容易的習(xí)題,并不一定比解一道復(fù)雜難題的勞動強度和效率低。比如,與一個人扛一大袋大米上五層樓相比,一個人拎一個小提包也上到五層樓當(dāng)然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那么,拎包人比扛米人的勞動強度大。所以在相同時間內(nèi),解50道、100道簡單題,可能要比解一道難題的勞動強度大。再如,若這袋大米的重量為100千克,由于太重,超出了扛米人的能力,以至于扛米人費了九牛二虎之力,卻沒能扛到五樓,雖然勞動強度很大,卻是勞而無功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動強度也許并不很大,而效率之高卻是不言而喻的。由此可見,去解一道難以解出的難題,不如去解30道稍微簡單一些的習(xí)題,其收獲也許會更大。因此,我們在學(xué)習(xí)時,應(yīng)根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
第六,認真、仔細地審題。對于一道具體的習(xí)題,解題時最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。讀題一旦結(jié)束,哪些是已知條件?求解的結(jié)論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應(yīng)該已經(jīng)結(jié)成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗證。有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。很多時候?qū)W生來問問題,我和他一起讀題,讀到一半時,他說:“老師,我會了。”所以,在實際解題時,應(yīng)特別注意,審題要認真、仔細。
第七,學(xué)會畫圖。畫圖是一個翻譯的過程。讀題時,若能根據(jù)題義,把對數(shù)學(xué)(或其他學(xué)科)語言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。所以,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對于提高解題速度非常重要。畫圖時應(yīng)注意盡量畫得準(zhǔn)確。畫圖準(zhǔn)確,有時能使你一眼就看出答案,再進一步去演算證實就可以了;反之,作圖不準(zhǔn)確,有時會將你引入歧途。
最后,對于常用的公式,如數(shù)學(xué)中的乘法公式、三角函數(shù)公式,常用的數(shù)字,如11~25的平方,特殊角的三角函數(shù)值,化學(xué)中常用元素的化學(xué)性質(zhì)、化合價以及化學(xué)反應(yīng)方程式等等,都要熟記在心,需用時信手拈來,則對提高演算速度極為有利。
總之,學(xué)習(xí)是一個不斷深化的認識過程,解題只是學(xué)習(xí)的一個重要環(huán)節(jié)。你對學(xué)習(xí)的內(nèi)容越熟悉,對基本解題思路和方法越熟悉,背熟的數(shù)字、公式越多,并能把局部與整體有機地結(jié)合為一體,形成了跳躍性思維,就可以大大加快解題速度。
提高初中數(shù)學(xué)解題速度的方法相關(guān)文章: