高二數(shù)學(xué)知識點(diǎn)小結(jié)
高二數(shù)學(xué)的知識點(diǎn)不少,同學(xué)們要懂得總結(jié),以下是小編給大家?guī)淼膸灼叨?shù)學(xué)知識點(diǎn)小結(jié),供大家參考借鑒。
高二數(shù)學(xué)知識點(diǎn)小結(jié)
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺(tái):
幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個(gè)矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:底面是一個(gè)圓;母線交于圓錐的頂點(diǎn);側(cè)面展開圖是一個(gè)扇形.
(6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:上下底面是兩個(gè)圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開圖是一個(gè)弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):原來與x軸平行的線段仍然與x平行且長度不變;
原來與y軸平行的線段仍然與y平行,長度為原來的一半.
4、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.
過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.
(3)直線方程
點(diǎn)斜式:直線斜率k,且過點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.
斜截式:,直線斜率為k,直線在y軸上的截距為b
兩點(diǎn)式:()直線兩點(diǎn),
截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.
一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
(4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過定點(diǎn)的直線系
()斜率為k的直線系:,直線過定點(diǎn);
()過兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.
(7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組的一組解.
方程組無解;方程組有無數(shù)解與重合
(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn)
(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.
高二數(shù)學(xué)知識點(diǎn)總結(jié)
排列組合公式/排列組合計(jì)算公式
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問題
排列分順序,組合不分
例如把5本不同的書分給3個(gè)人,有幾種分法."排列"
把5本書分給3個(gè)人,有幾種分法"組合"
1.排列及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).
2.組合及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為n!/(n1!*n2!*...*nk!).
k類元素,每類的個(gè)數(shù)無限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m).
排列(Pnm(n為下標(biāo),m為上標(biāo)))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n
組合(Cnm(n為下標(biāo),m為上標(biāo)))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9!=9*8*7*6*5*4*3*2*1
從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);
因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r
舉例:
Q1:有從1到9共計(jì)9個(gè)號碼球,請問,可以組成多少個(gè)三位數(shù)?
A1:123和213是兩個(gè)不同的排列數(shù)。即對排列順序有要求的,既屬于“排列P”計(jì)算范疇。
上問題中,任何一個(gè)號碼只能用一次,顯然不會(huì)出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個(gè)位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9*8*7個(gè)三位數(shù)。計(jì)算公式=P(3,9)=9*8*7,(從9倒數(shù)3個(gè)的乘積)
Q2:有從1到9共計(jì)9個(gè)號碼球,請問,如果三個(gè)一組,代表“三國聯(lián)盟”,可以組合成多少個(gè)“三國聯(lián)盟”?
A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。
上問題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9*8*7/3*2*1
排列、組合的概念和公式典型例題分析
例1設(shè)有3名學(xué)生和4個(gè)課外小組.(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加.各有多少種不同同方法?
解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有種不同方法.
(2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法.
點(diǎn)評由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問都用乘法原理進(jìn)行計(jì)算.
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?
解依題意,符合要求的排法可分為第一個(gè)排、、中的某一個(gè),共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:
∴符合題意的不同排法共有9種.
點(diǎn)評按照分“類”的思路,本題應(yīng)用了加法原理.為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問題的一種數(shù)學(xué)模型.
例3判斷下列問題是排列問題還是組合問題?并計(jì)算出結(jié)果.
(1)高三年級學(xué)生會(huì)有11人:①每兩人互通一封信,共通了多少封信?②每兩人互握了一次手,共握了多少次手?
(2)高二年級數(shù)學(xué)課外小組共10人:①從中選一名正組長和一名副組長,共有多少種不同的選法?②從中選2名參加省數(shù)學(xué)競賽,有多少種不同的選法?
(3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):①從中任取兩個(gè)數(shù)求它們的商可以有多少種不同的商?②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積?
(4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?
分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題.其他類似分析.
(1)①是排列問題,共用了封信;②是組合問題,共需握手(次).
(2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法.
(3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積.
(4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法.
例4證明.
證明左式
右式.
∴等式成立.
點(diǎn)評這是一個(gè)排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過程得以簡化.
例5化簡.
解法一原式
解法二原式
點(diǎn)評解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過程得以簡化.
例6解方程:(1);(2).
解(1)原方程
解得.
(2)原方程可變?yōu)?/p>
∵,,
∴原方程可化為.
即,解得
第六章排列組合、二項(xiàng)式定理
一、考綱要求
1.掌握加法原理及乘法原理,并能用這兩個(gè)原理分析解決一些簡單的問題.
2.理解排列、組合的意義,掌握排列數(shù)、組合數(shù)的計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的問題.
3.掌握二項(xiàng)式定理和二項(xiàng)式系數(shù)的性質(zhì),并能用它們計(jì)算和論證一些簡單問題.
二、知識結(jié)構(gòu)
三、知識點(diǎn)、能力點(diǎn)提示
(一)加法原理乘法原理
說明加法原理、乘法原理是學(xué)習(xí)排列組合的基礎(chǔ),掌握此兩原理為處理排列、組合中有關(guān)問題提供了理論根據(jù).
知識相關(guān)文章:
1.生活常識
3.英語知識
4.常識科普知識大全
5.日常健康知識
高二數(shù)學(xué)知識點(diǎn)小結(jié)
上一篇:中國森林防火小知識